Изучаем Arduino: инструметы и методы технического волшебства - [48]

Шрифт
Интервал

9.4.1. Техническое описание МСР4231

Прежде всего, следует изучить техническое описание микросхемы МСР4231, которое можно найти через поисковую систему Google. Ссылки на техническое опи-

- 191 -

сание для МСР4231 присутствуют на странице www.exploringarduino.com/content/ch9.

В техническом описании можно найти ответы на следующие вопросы:

• цоколевка микросхемы;

• какие выводы являются управляющими;

• как регулируется в данной микросхеме сопротивление потенциометра;

• какие команды SPI необходимы, чтобы управлять двумя потенциометрами.

Чтобы найти ответы на эти вопросы, на рис. 9.2-9.4 приведены некоторые важные фрагменты технического описания. Прежде всего, взгляните на цоколевку микросхемы МСР4231, изображенную на рис. 9.2.

Рис. 9.2. Цоколевка микросхемы МСР4231

При подготовке к работе с новым устройством необходимо сначала разобраться с назначением контактов. Вот назначение выводов МСР4231:

• РОА, POW и РОВ -выводы первого потенциометра;

• PIA, PIW и PIB-выводы второго потенциометра;

• VDD -вывод питания микросхемы 5 В;

• VSS -вывод подключения к земле;

• CS-контакт SS для интерфейса SPI, черта сверху означает, что активный уровень низкий (0 В -чип выбран, 5 В -не выбран);

• SDI и SDO - контакты последовательного ввода и вывода данных ( соответствуют MOSI и MISO);

• SCK -линия синхронизации SPI;

• SHDN и WP -контакты для выключения и защиты от записи, соответственно.

Для МСР4231 контакт WP не задействован и его можно игнорировать. Активный уровень на контакте SHDN низкий, как и на выводе CS. При низком уровне средний вывод потенциометра отключен. Чтобы потенциометр был всегда включен, необходимо соединить контакт SHDN непосредственно с шиной 5 В.

Далее необходимо узнать полное сопротивление потенциометра и сопротивление среднего вывода. Подобно обычному потенциометру, сопротивление между клеммами А и В в цифровом тоже постоянно. Средний вывод также имеет собственное

- 192 -

сопротивление, и это нужно принимать во внимание. Обратимся к пятой странице технического описания (рис. 9.3).

Прежде всего, выясним полное сопротивление потенциометра, обозначаемое R д в,

Доступны четыре варианта этого чипа, каждый с разным значением сопротивления (от 5 до 100 кОм). Далее используем вариант 103, сопротивление которого составляет примерно 10 кОм. Важно отметить, что цифровые потенциометры, как правило, имеют довольно большой разброс (из рис. 9.3 видно, что фактическое сопротивление может изменяться на ±20% ). Также следует отметить, что собственное сопротивление среднего вывода потенциометра составляет от 75 до 160 Ом. Это сопротивление нужно учитывать, особенно при управлении динамиком или светодиодом.

AC/DC CHARACTERISTICS (CONTINUED)


Рис. 9.3. Фрагмент технического описания микросхемы МСР4231

Далее разберемся с командами для управления цифровым потенциометром. На МСР4231 необходимо отправить две команды. Первая определяет выбор нужного потенциометра, вторая устанавливает текущее значение сопротивления выбранного потенциометра. Формат команд приведен на рис. 9.4.

Из рис. 9.4 ясно, что существуют два вида команд: 8-разрядные и 16-разрядные.

Первая команда позволяет увеличить сопротивление потенциометра, вторая установить произвольное значение сопротивления. Рассмотрим 16-битовую команду, обеспечивающую большую гибкость. По шине данных передается адрес ячейки памяти, код команды ( чтение, запись, приращение или уменьшение) и значение данных.

Рис. 9.4. Формат команд МСР4231

В техническом описании приведены адреса регистров, связанных с каждым потенциометром. Регистр первого потенциометра расположен в ячейке памяти по адресу 0, второго - по адресу 1. Зная это, можно отправить необходимые команды на установку значений для каждого потенциометра. Чтобы задать значение для первого потенциометра, первый байт будет содержать В00000000, а второй - величину сопротивления (0-128). Чтобы установить значение для второго потенциометра, первый байт будет равен B000 10000, а второй - величине сопротивления. Как видно из рис. 9.4, первые 4 бита первого байта- это адрес регистра памяти, следующие 2 бита- код команды (00 - для записи), следующие 2 бита - это старшие биты величины сопротивления (должны быть равны нулю, потому что максимальное значение для этого потенциометра составляет 128).

Вот и все, что нужно знать для взаимодействия цифрового потенциометра с платой Arduino. Теперь подключим его, чтобы управлять яркостью светодиодов.

9.4.2. Описание схемы устройства

Чтобы в полной мере проверить знания протокола SPI, возьмем две микросхемы MCP4231, что даст нам четыре управляемых потенциометра. Каждый из них подключен последовательно со своим светодиодом (красным, желтым, зеленым и синим) и регулирует его яркость. Задействованы только две клеммы потенциометра.

Один контакт каждого потенциометра подключен через резистор к шине 5 В, второй ( средний вывод) - к аноду светодиода. Схема подключения одного светодиода изображена на рис. 9.5.

Катод светодиода подключен к земле. Когда сопротивление цифрового потенциометра минимально, ток течет от источника 5 В через резистор 100 Ом и средний вывод потенциометра (имеющий сопротивление - 75 Ом) и далее через светодиод.