Изобретатель - природа - [14]
Модель невозможно сделать абсолютно адекватной природе. В ней существуют различного рода аппроксимации (приближения) и параметризации, которые вносят в результаты расчетов "шум" и ошибки. "Компьютерные глобальные модели - это пока своего рода искусство, поскольку нам никогда не удается достичь того уровня, на котором происходят физические процессы", - говорит директор Европейского метеорологического центра Леннарт Бенгтссон. Начальная информация также содержит "шум", связанный с неполнотой данных наблюдений, их плотностью и точностью измерений. Таким образом, ошибки, содержащиеся в начальной информации и в самой модели, а также создаваемые ЭВМ за счет округлений при вычислениях, в процессе работы модели (во время прогноза) порождают новые ошибки, "шум". Этот "шум" из-за нелинейности уравнений модели со временем растет и через определенный момент времени (примерно через неделю) оказывается доминирующим над полезной информацией. Такое свойство модели породило отмеченный нами выше так называемый теоретический предел предсказуемости погоды не более чем на 7-10 дней.
Обычно в подобной метеорологии - области науки - принято проводить эксперименты. Но как можно экспериментировать с погодой? В каком-то узком масштабе это возможно, но, безусловно, не в мировом. А для того чтобы понять и использовать для долгосрочного прогноза закономерности атмосферы как единой целостной физической системы, метеорология нуждается прежде всего во всеобъемлющей, глобальной информации о многообразных процессах, происходящих в воздушном океане и подстилающее поверхности. При отсутствии точных данных о поведенш атмосферы на всем земном шаре в течение определенной периода времени, хотя бы в течение года, нельзя, невозможно судить о справедливости тех или иных допущений, которые неизбежно делаются при построении теории движения атмосферы - теоретической основы прогнозов погоды. Хорошо осознавая это, метеорологи давно вынашивали идею создания глобальной системы наблюдений, которая позволила бы выявить те физические процессы, которые определяют формирование крупных аномалий погоды на долгий срок. Реализация этой идеи стала возможной с появлением спутников и накопленным в СССР и США в 60-е и 70-е годы опытом эксплуатации метеорологических космических систем совместно с наземными системами наблюдения за атмосферой.
11 лет длилась под эгидой Всемирной метеорологической организации и Международного совета научных союзов подготовка грандиозного международного мероприятия - Первого глобального эксперимента Программы исследования глобальных атмосферных процессов (ПИГАП). В нем приняли участие более 50 государств, в том числе и Советский Союз.
Временная глобальная наблюдательная система начала функционировать 1 декабря 1978 года и завершила работу 1 декабря 1979 года. Основой системы являлась традиционная сеть наблюдений Всемирной службы погоды: свыше 2500 синоптических станций (из них в СССР - более 500), ведущих наблюдения за погодой у земли, свыше 700 аэрологических станций (из них в СССР - более 200), зондирующих атмосферу до высоты 30-40 километров, и система полярно-орбитальных метеорологических спутников СССР и США, фотографирующих облачный покров в видимом и инфракрасном диапазонах спектра излучения (некоторые из этих спутников выполняют также дистанционное зондирование атмосферы - фиксируют распределение температуры в атмосфере по высоте в подспутниковом районе). В дополнение, к этой постоянно действующей сети наблюдений были созданы временные наблюдательные системы. Над экватором на высоту 35 800 километров было выведено 5 геостационарных спутников, расположенных примерно на равных расстояниях друг от друга. Обработка последовательных фотографий облаков с этих спутников позволяла определять скорость и направление ветра на нескольких высотах в атмосфере в широтном поясе между 50 градусами с. ш. и 50 градусами ю. ш.
В океанах Южного полушария, а также в Арктике было расставлено более 360 дрейфующих буев, из которых одновременно работало до 206. Эти буи совместно с двумя полярно-орбитальными спутниками образовывали систему для измерения температуры воды и давления на поверхности океана, профиля температуры в атмосфере, а также скорости и направления течений в океане. В экваториальной зоне около 40 научно-исследовательских судов вели наблюдения за ветром и другими метеорологическими и океанографическими величинами. Несколько десятков специально оборудованных пассажирских самолетов измеряли скорость и направление ветра и температуру воздуха по маршруту полета и автоматически передавали эти данные в специальные центры сбора. Были организованы и другие системы наблюдений.
Весь огромный поток метеоинформации практически собирался без потерь благодаря специально созданному плану управления данными. В основном он опирался на метеорологическую глобальную систему телесвязи, но в дополнение к традиционной системе сбора, обработки и распространения гидрометеорологической информации был организован ряд дополнительных центров, которые отвечали за обработку информации, поступающей от специальных наблюдательных средств.
Пожалуй, ни одна из новых наук, родившихся в наш XX век, не приобрела за короткий срок своего существования такой огромной популярности, как бионика. Однако, если не считать отдельных статей и брошюр, до сих пор о бионике с инженерных позиций с широким кругом читателей еще никто всерьез не говорил. Популяризация любой науки — дело сложное и трудное, а бионики — особенно. Чтобы написать в занимательной форме с большой научной достоверностью книгу о современных достижениях бионики и дальнейших путях развития этой новой многообещающей науки, нужно обладать не только обширными и глубокими инженерными знаниями, но и приобщиться к «безбрежной» биологии, что само по себе не просто.
Книга состоит из коротких рассказов о том, как человек пытался и пытается использовать живые организмы в самых различных областях своей деятельности. Из нее можно узнать о бактериях, помогающих добывать полезные ископаемые и очищать их от вредных примесей, о собаках, обнаруживающих неисправности в газовых магистралях, о голубях - технических контролерах, о муравьях - открывателях новых звезд, о живых барометрах и сейсмографах, о языке животных и многих других замечательных особенностях живых организмов.
Истощение месторождений нефти, угля и газа может привести к глобальной энергетической катастрофе. Ведь традиционные источники энергии иссекаемы. А ветер, Солнце, реки, океаны и моря обладают неисчерпаемыми запасами энергии. Доступна в неограниченных количествах и биомасса, и вторсырье.В книге рассматриваются устройства, с помощью которых можно получать энергию из неисчерпаемых или возобновляемых природных ресурсов. Такие устройства снижают зависимость от традиционного сырья. Повсеместный переход на альтернативную энергетику может эту зависимость полностью исключить.В ряде случаев использование традиционных источников или дорого, или они расположены так далеко от загородного дома, что коммуникации проложить невозможно.
Цель книги искусствоведа Сергея Кавтарадзе – максимально простым и понятным языком объяснить читателю, что такое архитектура как вид искусства. Автор показывает, как работают механизмы восприятия архитектурного сооружения, почему зритель получает от него эстетическое удовольствие. Книга учит самостоятельно видеть и анализировать пластические достоинства формы и бесконечные слои смыслового наполнения архитектурных памятников, популярно излагая историю европейских стилей и логику их развития.Книга адресована широкому кругу читателей, интересующихся архитектурой и историей искусства.
Как отапливать загородный дом и сделать систему отопления экономичной, будет ли хватать горячей воды на три санузла? И, наконец, как не превратиться в источник наживы для «хитрунов» – недобросовестных монтажников и бесконечных проверяющих чиновников? На эти (и не только) вопросы вы сможете получить ответы, прочитав данную брошюру.