История принципов физического эксперимента от античности до XVII века - [2]

Шрифт
Интервал

Введение

В тот период, о котором пойдет речь в нашем исследовании, научное познание имело такой смысл и занимало такое место в культуре, что историку науки каждый раз приходится обосновывать правомерность своего анализа, доказывать, что речь идет не о простом распространении современных представлений на прошлое. Если же говорят о формах экспериментальной деятельности, свойственных научному мышлению античности или средневековья, нужда в таком обосновании особенно остра. Поэтому мы хотим предпослать историческому описанию несколько соображений общего характера. Эти соображения не претендуют на теоретическую строгость или завершенность. Вводимые здесь представления будут уточняться и развиваться по ходу изложения материала.

Во введении нельзя, разумеется, дать сколько-нибудь подробный логико-философский анализ проблемы эксперимента во всех аспектах, развернутых в современной чрезвычайно обширной и разнообразной литературе по этому предмету. Вопросы, которые мы собираемся сейчас обсудить, жестко связаны с одним ведущим: «Как возможно историческое исследование экспериментальной деятельности в физике, если речь идет о древней науке?» Понятие эксперимента развертывается поэтому лишь в той мере, которая необходима для нашей сравнительно узкой темы.

I

Вопрос: «Что такое эксперимент?» с некоторых пор оказался отнюдь не тривиальным для теоретической физики. Если в рамках классической физики разграничение прибора и испытуемого объекта не составляло проблемы, и экспериментатор не задумываясь разделял единое физическое событие на «орудие» (средство наблюдения) и «предмет» (наблюдаемое), то уже в развитии электродинамики и явно с возникновением релятивистских и квантово-механических проблем само это разделение стало предметом теоретического анализа *. Теория прибора и измерения выступила в качестве существенной части теории самого объекта.

* См. примечания в конце книги.

Необходимость включить в теорию «точку зрения наблюдателя» впервые была теоретически осмыслена в теории относительности Эйнштейна. В принципе относительности это определяется как требование исключить неявное присутствие «точки зрения» из формулировки физических законов 2 . Гораздо более радикальное и заостренно-проблемное выражение это требование нашло в рамках квантовой механики. «...Вытекающее из самой сути измерения применение классических понятий» 3 при описании квантово-механических событий повлекло за собой ряд неожиданных утверждений. Различные аспекты ситуации, зафиксированные в принципах наблюдаемости и неопределенности Гайзенберга и в принципе соответствия Бора были затем сведены Бором в принцип дополнительности. В известной дискуссии с Эйнштейном, Подольским и Розеном о «полноте квантово-механического описания» и в многочисленных статьях и докладах Бор показал содержательную глубину этого принципа 4 .

Необходимо, с одной стороны, чтобы квантово-механические объекты были объектами возможного эксперимента. В определенной экспериментальной установке, подчиняющейся законам классической физики, они, следовательно, могут быть воспроизведены только как «псевдоклассические» объекты (квантово-механический объект, воспроизведенный с определенной классической «точки зрения»). «Дополнительность» есть в этом смысле способ рассматривать квантово-механический объект, включив в его теорию возможные классические «точки зрения» на него.

С другой стороны, любой процесс измерения квантово-механического объекта сам по себе есть квантово-механическое событие. Измеряемое деформируется, становится другим в самом акте измерения. Поскольку взаимодействие между прибором и объектом конечно и того же порядка, что и взаимодействие между самими квантовыми объектами, измерительное устройство оказывается как бы частью измеряемого. Теория потенциального измерения (возможного эксперимента) должна быть включена в теорию квантового объекта как такового.

В ином отношении с кругом этих проблем находится другой, быть может, даже более занимательный процесс, наблюдаемый в современной теоретической физике. Представление об эксперименте как о простом средстве получения и проверки наших знаний кажется недостаточным, когда обращают внимание на ту исключительно автономную роль, которую играет в современной теоретической физике конструктивно-математическое мышление. Содержание фундаментальной теории в существенных чертах определяется принципами ее математической структуры 5 . Анализ трудностей, с которыми столкнулись физики в попытке построить единую теорию поля, приводит, в частности, к выводу, что для такой теории «требуется, чтобы необходимость величины предшествовала бы измерению самой величины, ее эмпирическому обоснованию».

Эти процессы чрезвычайно характерны для так называемого неклассического типа теоретизирования в современной математической физике. Можно привести немало свидетельств недоумения, высказываемого современными математиками и физиками в связи с проблемой эксперимента. Тривиальный на первый взгляд факт происхождения наших знаний из опыта оказывается «чудом», а эффективность математического мышления в физике — непонятным предопределением 7 . Место и роль эксперимента в отношениях теоретического мышления с реальностью оказываются далеко не столь ясными, как это представляется на первый взгляд.


Еще от автора Анатолий Валерианович Ахутин
Философское уморасположение

Что такое философия и чем она отличается от науки, религии, мировоззрения, идеологии? В чем суть философского уморасположения, особого, уникального способа мыслить, который был изобретен в колыбели европейской цивилизации – Древней Греции? В авторском курсе лекций, прочитанных студентам РГГУ, философ и историк философии Анатолий Валерианович Ахутин раскрывает философию не как доступную только для специалистов академическую дисциплину, а как нечто доступное каждому в той мере, в какой он готов пуститься в увлекательнейшую и рискованную авантюру самостоятельной мысли.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.