История лазера - [51]
Первый процесс, который мы сегодня называем «спонтанным излучением», происходит, если молекула находится не в низшем состоянии энергии, а в некотором высшем состоянии. Тогда она будет переходить в состояние с низкой энергией, испуская фотон с энергией, которая точно равна разности энергий этих двух состояний (рис. 22, а). Этот процесс девозбуждения является процессом, описываемым Бором для молекулы или возбужденного атома скачком переходить в состояние с низшей энергией. Эйнштейн предположил, что этот процесс происходит случайным образом, подобным тому, как радиоактивный атом распадается во времени.
Второй процесс может рассматриваться как обратный первому и является процессом поглощения. Молекула, находящаяся в определенном состоянии энергии, может перейти в более высокое состояние, если ударится с фотоном, имеющим энергию, как раз равную разности между двумя состояниями (рис. 22, б). Этот процесс также рассмотрен Бором. В этом случае фотон исчезает (поглощается) и молекула получает всю его энергию, чтобы перейти на высшее энергетическое состояние.
Третий процесс был впервые введен Эйнштейном и сегодня называется «вынужденным (индуцированным) излучением». Согласно этому процессу, если молекула находится в высшем энергетическом состоянии и с ней сталкивается фотон с энергией, в точности равной разности между состояниями, то она может перейти в низшее состояние. При этом молекула испускает фотон с той же самой энергией, а первый фотон продолжает свое движение свободно, просто «стимулируя» молекулу девозбудиться (рис. 22, в).
Рис. 22. Верхняя часть (а). Электрон, сидящий на верхнем уровне, спонтанно сваливается на нижний уровень (спонтанное излучение), испуская разность между их энергиями в виде фотона, который испускается случайным образом. На средней части (б) электрон подбрасывается с нижнего уровня на верхний уровень фотоном, который имеет энергию, равную разности энергий этих уровней и которая поглощается (процесс поглощения). Нижняя часть (в). Вынужденное излучение, в результате чего фотон с надлежащей энергией (которая равна разности энергий уровней) ударяет электрон, который сидит на верхнем уровне, вынуждая его спрыгнуть на нижний уровень, испуская при этом другой фотон, идентичный тому, что вызвал этот вынужденный процесс
Если мы теперь предположим, что молекулы могут взаимодействовать с излучением этими тремя процессами и что это взаимодействие не изменяет распределения энергии, которое зависит только от температуры и определяется законом Максвелла—Больцмана, то мы немедленно получаем закон Планка вместе со связанными коэффициентами, которые описывают эти три процесса. Эти коэффициенты сейчас называются коэффициентами Эйнштейна и определяют вероятности переходов. Квантовая теория Бора не дает указаний на законы, управляющие такими переходами, и концепция вероятностей переходов происходит из работы Эйнштейна.
Вывод Эйнштейном закона распределения Планка из введенных коэффициентов вероятности поглощения, спонтанного и вынужденного излучений, позволяет связать эти процессы через эти коэффициенты. Эйнштейну не удалось выразить их через характеристические параметры атома. Такое выражение было получено более чем десятью годами спустя П.А.М. Дираком, который использовал в то время уже полностью разработанную квантовую механику. Однако и выражения, найденные Эйнштейном, устанавливали, что коэффициенты поглощения и вынужденного излучения были равны и что отношение между спонтанным излучением и поглощением обратно пропорционально кубу длины волны. Поскольку вероятность спонтанного излучения можно экспериментально измерить, формулы Эйнштейна могут быть проверены путем сравнения интенсивностей поглощения и спонтанного излучения спектральных линий.
Еще один важный результат, установленный в работе Эйнштейна, заключался в том факте, что когда атом или молекула изменяют свою энергию с помощью излучения, поглощая или испуская квант света, получается также изменение импульса, точно как при ударах бильярдных шаров. Атом, который испустил фотон в некотором направлении, получает отдачу в противоположном направлении, точно также как отдача ружья при выстреле.
Некоторое время спустя, в 1923 г., немецкий физик Вальтер Боте (1891— 1957) использовал теорию Эйнштейна испускания и поглощения света, чтобы показать (среди других вещей), что квант света, испущенный в процессе вынужденного излучения, кроме того, что он имеет такую же энергию, как и квант, который его индуцировал, распространяется в том же направлении, т.е. обладает тем же импульсом, что и индуцирующий квант. Эта особенность является именно той, которая в точности необходима для процесса усиления. Действительно, используя классический язык, это означает, что волна, распространяющаяся в среде, содержащей возбужденные атомы или молекулы, будет дополняться волной, испускаемой в индуцированном процессе, т.е. будет усиливаться.
Однако в течение почти 30 лет концепция вынужденного излучения использовалась лишь теоретически и не получала внимания с экспериментальной точки зрения. Даже в 1954 г. В. Гайтлер (1904—1981) в своей классической монографии по квантовой теории излучения отвел очень малое место этому явлению.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.
Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.
Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.