История греческой философии в её связи с наукой - [6]
В Греции мы наблюдаем появление того, что можно назвать теоретической системой математики: греки впервые стали строго выводить одни математические положения из других, т.е. ввели в математику доказательство. "Отдельные математические теории, - пишет историк математики И.Г. Башмакова, - строятся как системы, основанные на доказательстве. Доказательство, система доказательств играют в нашей науке особую роль. Ведь большинство высказываний математики относится к бесконечному множеству объектов. Так, положение о том, что сумма углов треугольника равна 2d, не может быть установлено никаким конечным числом проверок: во-первых, потому, что треугольников бесконечно много и, во-вторых, каждое практическое измерение производится только с некоторой определенной степенью точности. Без доказательства никогда не могла бы быть открыта несоизмеримость величин, а без этого не существовало бы важнейших разделов современной математики. Можно сказать, что математика как наука стала существовать только после систематического введения в нее доказательств" (курсив мой. П.Г.). Одной из причин того, что математика стала в Древней Греции теоретической наукой, опирающейся на доказательство, был ее тесный союз с философией. Этот союз определил характер не только древнегреческой математики, но и философии, особенно таких ее направлений, как пифагорейство, платонизм, а позднее - неоплатонизм. Не случайно время возникновения философии - конец VI-V вв. до н.э. совпадает с периодом становления теоретической математики.
Надо отметить, что в Древней Греции так же, как и в Вавилоне и Египте, разрабатывалась техника вычислений, без которой невозможно было решать практические задачи строительства, военного дела, торговли, мореходства и т.д. Но важно иметь в виду, что сами греки называли приемы вычислительной арифметики и алгебры логистикой (logistika - счетное искусство, техника счисления) и отличали логистику как искусство вычисления от теоретической математики. Правила вычислений, стало быть, разрабатывались в Греции точно так же, как и на Востоке, и, конечно, греки при этом могли заимствовать очень многое как у египтян, так и в особенности у вавилонян.
О логистике греков, как и о математических вычислениях на Востоке, можно сказать, что она носила практически-прикладной характер. "В состав логистики входили: счет, арифметические действия с целыми числами вплоть до извлечения квадратных и кубических корней, действия на счетном приборе абаке, операции с дробями и приемы численного решения задач на уравнения первой и второй степени. В логистике рассматривались также приложения арифметики к землемерию и иным задачам повседневной жизни. Сами греки отличали логистику от теоретической арифметики, которую они называли просто арифметикой. Правила логистики излагались догматически и, вообще говоря, не снабжались доказательствами так же, как это было принято в египетских папирусах" (курсив мой. - П.Г.).
Таким образом, в Греции имела место как практически-прикладная математика (искусство счисления), сходная с египетской и вавилонской, так и теоретическая математика, предполагавшая систематическую связь математических высказываний, строгий переход от одного предложения к другому с помощью доказательства. Именно математика как систематическая теория была впервые создана в Греции.
Сравнивая греческую математику с древнеегипетской, голландский историк математики ван дер Варден указывает на ту границу, которая проходит между греками и их восточными предшественниками: "Достоверно, что египетский способ умножения и вычисления с основными дробями греки получили от египтян, а затем развили его до той степени, какую показывает нам Ахмимский папирус эллинистической эпохи. Но вычисление - это еще не математика.
Точно так же греки могли заимствовать у египтян правила вычисления площадей и объемов. Однако такие правила до греков еще не составляли математики; именно они поставили вопрос: как это доказать?"
Надо полагать, что становление математики как систематической теории, какой мы ее находим в евклидовых "Началах", представляло собой длительный процесс: от первых греческих математиков (конец VI-V в. до н.э.) до III в. до н.э., когда были написаны "Начала", прошло более двухсот лет бурного развития греческой науки. Однако уже у ранних пифагорейцев, т.е. на первых этапах становления греческой математики, мы можем обнаружить такие специфические особенности, которые принципиально отличают их подход к математике от древневосточного.
Прежде всего такой особенностью является новое понимание смысла и цели математического знания, иное понимание числа: с помощью числа пифагорейцы не просто решают практические задачи, а хотят объяснить природу всего сущего. Они стремятся поэтому постигнуть сущность чисел и числовых отношений, ибо через нее надеются понять сущность мироздания. Так возникает первая в истории попытка осмыслить число как миросозидающий и смыслообразующий элемент.
То, что у вавилонян и египтян выступало всего лишь как средство, пифагорейцы превратили в специальный предмет исследования, т.е. в цель последнего.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга посвящена жизни и творчеству М. В. Ломоносова (1711—1765), выдающегося русского ученого, естествоиспытателя, основоположника физической химии, философа, историка, поэта. Основное внимание автор уделяет философским взглядам ученого, его материалистической «корпускулярной философии».Для широкого круга читателей.
Русская натурфилософская проза представлена в пособии как самостоятельное идейно-эстетическое явление литературного процесса второй половины ХХ века со своими специфическими свойствами, наиболее отчетливо проявившимися в сфере философии природы, мифологии природы и эстетики природы. В основу изучения произведений русской и русскоязычной литературы положен комплексный подход, позволяющий разносторонне раскрыть их художественный смысл.Для студентов, аспирантов и преподавателей филологических факультетов вузов.
В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.
Книга посвящена жизни и творчеству видного французского философа-просветителя Э. Б. де Кондильяка, представителя ранней, деистической формы французского материализма. Сенсуализм Кондильяка и его борьба против идеалистической метафизики XVII в. оказали непосредственное влияние на развитие французского материализма.Для широкого круга.
«…У духовных писателей вы можете прочесть похвальные статьи героям, умирающим на поле брани. Но сами по себе «похвалы» ещё не есть доказательства. И сколько бы таких похвал ни писалось – вопрос о христианском отношении к войне по существу остаётся нерешенным. Великий философ русской земли Владимир Соловьёв писал о смысле войны, но многие ли средние интеллигенты, не говоря уж о людях малообразованных, читали его нравственную философию…».
В монографии раскрыты научные и философские основания ноосферного прорыва России в свое будущее в XXI веке. Позитивная футурология предполагает концепцию ноосферной стратегии развития России, которая позволит ей избежать экологической гибели и позиционировать ноосферную модель избавления человечества от исчезновения в XXI веке. Книга адресована широкому кругу интеллектуальных читателей, небезразличных к судьбам России, человеческого разума и человечества. Основная идейная линия произведения восходит к учению В.И.