История физики - [8]
В. Р. Гамильтон, который играл важную роль также в геометрической оптике, указал на математическую аналогию между этой дисциплиной и механикой. Лучи света и траектории материальной точки соответствуют друг другу настолько хорошо, что возможно объединить траектории всех материальных точек, выходящих с одинаковыми скоростями из одной и той же точки, в одном «фокусе» и тем самым механически получить «оптическое» изображение. Это, однако, оставалось невыполненным до тех пор, пока не были открыты электроны - частицы, у которых электрические силы значительно превосходят силу тяжести. Современный электронный микроскоп, по крайней мере его электростатический вариант*), есть осуществление мысли Гамильтона.
*) Существует также магнитный электронный микроскоп, который основан на других принципах.
Созданная Эйнштейном в 1905 г. теория относительности мало изменяет динамику материальной точки, как это показал М. Планк в 1906 г. (основополагающая работа Эйнштейна в этом пункте неправильна).
Одной из характерных черт этой теории является введение универсальной константы, скорости света, механическое значение которой прежде было неизвестно. Остается попрежнему в силе закон, устанавливающий равенство силы изменению импульса в единицу времени, а также закон сохранения импульса замкнутой системы. Как и прежде, отсюда вытекает закон сохранения энергии; изменяются только связи импульса и энергии со скоростью. Это изменение заметно также только для скоростей порядка скорости света; при этом импульс и энергия по мере приближения к этим скоростям возрастают бесконечно, так что никакое тело никогда не может достигнуть скорости света. Она - недостижимая высшая граница для скоростей любых частиц. При радиоактивном распаде известны скорости электронов, достигающие 99% скорости света и больше, но никогда в эксперименте не была обнаружена сверхсветовая скорость. Правильность релятивистской формулы для импульса доказали многочисленные измерения скорости быстрых электронов в период с 1906 по 1910 г. [Вальтер Кауфман (1871-1947), Альфред Генрих Бухерер (1863-1927), Шарль Эжен Гие (1866-1942) и С. Ратновский (1884-1945)].
Принципиально еще важнее изменение понятия массы, к которому приводит эта теория. Эйнштейн в 1905 г. доказал, что всякое увеличение внутренней энергии должно увеличивать массу, а именно на величину, которая получается делением энергии, измеренной механической мерой, на квадрат скорости света. Но эти изменения массы в силу большой величины скорости света (3 • 10>10см/сек) незначительны для всех явлений, которые мы называем механическими, электрическими и термическими. Точно так же при химических реакциях с наибольшими тепловыми эффектами взвешивание не может доказать изменения общей массы реагирующих тел. Но в ядерной физике этот закон инертности энергии получает огромное значение (гл. 10).
Что дает классическая механика? Исключительно много. Она дает основы для всякой технической конструкции, поскольку последняя является механической, и тем самым глубоко проникает в обыденную жизнь; она находит применение в биологических науках, например как механика движения тела или механика слуха. Она содержит учение о деформации упругих твердых тел, о течении жидкостей, о возможных во всех подобных телах упругих колебаниях и волнах, т. е. содержит также физическую акустику. Она привела, например, к теории вынужденных колебаний, значение которой выходит далеко за пределы механики; механика является также основой для понимания электрических колебаний.
Механика описывает в совершенном согласии с опытом процессы движения звезд с массой 10>32-10>33г и движение ультрамикроскопических частиц с массой 10>-18г; она сохраняет свое значение для части наших опытов, касающихся движения молекул, атомов и еще более мелких элементарных частиц (электрон и т.д.). Поэтому она стала основой кинетической теории газов и физической статистики Больцмана-Гиббса. Так механика превратилась в храм величественной архитектоники и поразительной красоты.
Замечательно то, что долгое время механика отождествлялась со всей физикой; цель физики усматривали в сведении всех явлений к механике. И даже после того, как в 1900 г. увидели, что электродинамика не сводится к механике, многие ошибочно считали механику наукой, стоящей над опытом подобно математике.
Еще более глубокое потрясение механика испытала, когда квантовая теория с 1900 г. все яснее определяла границы ее значимости. Но даже там, где квантовая теория вытесняет механику, она оставляет неизменными два закона: сохранение энергии и импульса.
Попутно упомянем еще об одном достижений, которое, хотя и имеет более внешний характер, все же имело для физики очень большое значение. 2 июня 1799 г. Законодательное собрание в Париже приняло килограмм за единицу массы, а метр - за единицу длины. Вместе с более старой единицей времени, секундой, эти единицы явились исходным пунктом для CGS-системы (система сантиметр - грамм - секунда), к которой современная физика приводит все механические, электрические и магнитные единицы.
Акустика образует ветвь механики, которая, однако, особенно сначала, развивалась довольно самостоятельно. Уже в древности знали, что чистые тона в противоположность шумам основаны на периодических колебаниях источника звука. Пифагор (570-496 до н. э.) знал, кроме того, может быть из египетских источников, что длины струн, которые настроены на гармонические интервалы - октавы, квинты и т. д., при прочих одинаковых условиях относятся между собой, как 1:2, 2:3 и т. д. Значение, которое пифагорейцы приписывали числам в своей философии, связано, несомненно, с глубоким впечатлением, которое на них произвело это открытие. Изобретатели органов, широко распространившихся в IX столетии н. э., знали соответствующее правило у органных труб. Но акустическая наука в явной форме еще не участвовала в развитии музыкального искусства в течение двух тысячелетий после Пифагора. Лишь Галилей дал также и здесь решающий толчок для дальнейшего. В упомянутых «Discorsi» 1638 г. он устанавливает частоту как физический коррелат ощущения высоты тона. Он характеризует относительную высоту двух звуков посредством отношения их частот и выводит зависимость частоты колебаний струны от длины, напряжения и массы. Он наблюдал возбуждение колебаний посредством резонанса и объяснил это явление; он также показал особенность стоячих волн на поверхности воды в сосудах, производя колебания посредством трения. Еще дальше пошел его бывший ученик Марен Мерсенн (1588-1648): ему удалось почти в то же время, а именно в 1636 г., дать первое абсолютное определение числа колебаний, измерить скорость звука в воздухе, а также открыть, что струна в большинстве случаев одновременно с основным тоном дает еще гармонические обертоны. Жозеф Совер (1653-1716) сделал те же наблюдения над органными трубами, изучил сущность биений, а также установил на струнах положение узлов и пучностей посредством еще теперь применяемого бумажного «наездника».
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.