Искусственный интеллект на службе бизнеса - [7]

Шрифт
Интервал

Когда вы заходите на сайт, ИИ Amazon прогнозирует, что вы хотели бы купить, и предлагает соответствующие товары. Это целесообразный труд, однако его результаты далеки от идеала. В нашем случае точность прогнозов не превышает 5 %. И мы заказываем одну из множества рекомендуемых вещей. С учетом миллионного ассортимента это совсем не плохо!

Представьте, что ИИ Amazon собрал больше информации о нас и использует ее для улучшения качества прогнозов, – это усовершенствование сравнимо с поворотом регулятора громкости на колонках, только вместо звука регулируется точность прогнозов.

В определенный момент поворота ручки точность прогнозов ИИ достигает порогового значения и меняет бизнес-модель Amazon. Прогнозы становятся настолько точными, что компании выгоднее присылать вам товары, которые вы предположительно захотите купить, чем ждать, пока вы закажете их на сайте.

В таком случае другие магазины вам уже не нужны, а каждая покупка будет стимулировать следующую. Amazon получит основную долю содержимого вашего кошелька. Очевидно, что это выгодно Amazon, но также удобно и вам. Магазин доставляет покупки до того, как вы их совершили, и таким образом избавляет вас от траты времени на шопинг. С поворотом регулятора точности на максимум бизнес-модель Amazon меняется с «покупка – затем доставка» на «доставка – затем покупка».

Разумеется, покупатели не захотят возиться с возвратом нежелательных товаров. Поэтому Amazon вложится в отладку этого процесса – скажем, раз в неделю служба доставки будет собирать невостребованные посылки[12].

Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрил? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от основной доли кошелька. Например, сейчас мы вернули бы 95 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Для освоения новой бизнес-модели прогнозы пока еще недостаточно точны.

Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым[13].

Мы не утверждаем, что Amazon будет или должен внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получил патент США на «опережающую доставку»[14]. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «покупка – затем доставка» на «доставка – затем покупка», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет процесс инвестирования. И все это вследствие поворота регулятора точности прогностической машины.

Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.

Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[15], поверните его на 11 часов.

План книги

Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.

В части I мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.

В части II мы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а суждения определяют ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.

В части III перейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».


Рекомендуем почитать
История ИП. История взлетов и падений одного российского индивидуального предпринимателя

Изначально эта книга называлась «Из грязи в князи и назад, и так много раз подряд». За 12 предпринимательских лет, прежде чем вывести на федеральный уровень архитектурно-брендинговую компанию DeVision, основать главный форум для застройщиков СНГ и вместе с партнерами создать девелоперскую компанию в Тюмени, я познал много падений – провел убыточное федеральное мероприятие в Москве, открыл и закрыл несколько ресторанов, многократно банкротился, пережил увольнение, пятисекундную остановку сердца и серьезную драму в личной жизни.


Закон малинового варенья и еще 103 секрета консалтинга

Джеральд Вайнберг, исходя из своего более чем 50-летнего опыта работы консультантом, делится своими выводами, как запустить и успешно вести свой собственный консалтинговый бизнес. Благодаря использованию юмористичных Правил, Законов и Принципов — таких как Закон малинового варенья, Принцип картофельных чипсов, Правило Руди о брюкве — автор показывает, как, оставаясь самим собой, находить клиентов, завоевывать доверие и устанавливать правильную цену на свои услуги, о которой потом не придется жалеть. Если вы консультант, когда-либо пользовались услугами консультанта или хотите быть одним из них, эта книга будет вам полезна.


The Next Right Thing. Искусство принимать верные решения

Если вам необходимо принять жизненно важное решение, вы нашли эту книгу в нужный момент! Когда предстоит сделать судьбоносный выбор – вступить ли в брак, переехать в другую страну, сменить работу или завести ребенка (подставьте ваш вариант) – списки «за» и «против» окажутся бесполезными и только еще больше введут в заблуждение. Верное решение находится внутри вас самих, и отыскать его поможет метод Эмили Фриман, известной писательницы и коуча. Пройдя несколько простых шагов, вы научитесь лучше понимать себя и осознаете, что вам действительно нужно и чего вы хотите по-настоящему.


Hewlett Packard. Стратегия антихрупкости

В этой книге отражен результат 15-летнего исследования стратегического лидерства Hewlett Packard. Реальный опыт успешного применения принципов антихрупкости на практике, которые позволили компании выстоять против кризисов XX и XXI века.


Мастер историй. Увлекай, убеждай, вдохновляй

В этой книге Пол Смит, директор по коммуникациям и потребительским исследованиям в Procter & Gamble и популярный спикер, рассказывает, как наиболее эффективно использовать силу историй. Автор уверен: каждый может стать блестящим рассказчиком. Пол Смит предлагает сотню готовых историй на все случаи жизни, которые помогут вам привлекать внимание, вдохновлять и мотивировать. Книга предназначена для всех, кто хочет воодушевлять и убеждать любую аудиторию. На русском языке публикуется впервые.


Преступные эмбарго (Защита прав на интеллектуальную собственность препятствует распространению наукоемких продуктов, технологий и культурных ценностей)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.