Искусственный интеллект на службе бизнеса - [7]

Шрифт
Интервал

Когда вы заходите на сайт, ИИ Amazon прогнозирует, что вы хотели бы купить, и предлагает соответствующие товары. Это целесообразный труд, однако его результаты далеки от идеала. В нашем случае точность прогнозов не превышает 5 %. И мы заказываем одну из множества рекомендуемых вещей. С учетом миллионного ассортимента это совсем не плохо!

Представьте, что ИИ Amazon собрал больше информации о нас и использует ее для улучшения качества прогнозов, – это усовершенствование сравнимо с поворотом регулятора громкости на колонках, только вместо звука регулируется точность прогнозов.

В определенный момент поворота ручки точность прогнозов ИИ достигает порогового значения и меняет бизнес-модель Amazon. Прогнозы становятся настолько точными, что компании выгоднее присылать вам товары, которые вы предположительно захотите купить, чем ждать, пока вы закажете их на сайте.

В таком случае другие магазины вам уже не нужны, а каждая покупка будет стимулировать следующую. Amazon получит основную долю содержимого вашего кошелька. Очевидно, что это выгодно Amazon, но также удобно и вам. Магазин доставляет покупки до того, как вы их совершили, и таким образом избавляет вас от траты времени на шопинг. С поворотом регулятора точности на максимум бизнес-модель Amazon меняется с «покупка – затем доставка» на «доставка – затем покупка».

Разумеется, покупатели не захотят возиться с возвратом нежелательных товаров. Поэтому Amazon вложится в отладку этого процесса – скажем, раз в неделю служба доставки будет собирать невостребованные посылки[12].

Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрил? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от основной доли кошелька. Например, сейчас мы вернули бы 95 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Для освоения новой бизнес-модели прогнозы пока еще недостаточно точны.

Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым[13].

Мы не утверждаем, что Amazon будет или должен внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получил патент США на «опережающую доставку»[14]. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «покупка – затем доставка» на «доставка – затем покупка», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет процесс инвестирования. И все это вследствие поворота регулятора точности прогностической машины.

Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.

Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[15], поверните его на 11 часов.

План книги

Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.

В части I мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.

В части II мы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а суждения определяют ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.

В части III перейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».


Рекомендуем почитать
Не отвлекайте меня! Как сохранять высокую концентрацию несмотря ни на что

В этой книге известный эксперт по СДВГ (синдрому дефицита внимания и гиперактивности) и практикующий психиатр Эдвард Хэлловэлл предлагает эффективный план по решению величайшей проблемы современности – потери продуктивности. Доктор Хэлловэлл дает полезные и научно обоснованные рекомендации для достижения высокой концентрации в хаосе отвлекающих факторов и постоянных перегрузок. Книга предназначена для всех, кто хочет больше успевать на работе и сохранять высокую продуктивность несмотря ни на что. На русском языке публикуется впервые.


Менеджер Мафии. Руководство для корпоративного Макиавелли

Старейший в мире и лучше всего организованный конгломерат раскрывает свои тайны менеджмента перед всеми, кто готов ими воспользоваться. В отличие от других бизнес-пособий, данная книга избавлена от теоретического пустословия и представляет вниманию читателей философию лидерства, на которой основана и в соответствии с которой на протяжении многих веков успешно управляется Империя мафии, неуклонно раздвигающая свои границы. Для широкого круга читателей.


Сила других. Окружение определяет нас

Многие люди продвинулись дальше, чем предполагали, поскольку кто-то другой считал, что они смогут это. У Генри Форда был Томас Эдисон. Марка Цукерберга учил Стив Джобс. У Билла Гейтса были Уоррен Баффет и Эд Робертс. На нашу эффективность и результаты огромное влияние оказывают «другие», присутствующие в нашей жизни. С помощью этой книги вы научитесь превосходить собственные результаты и делать больше, когда больше невозможно. Генри Клауд – консультант по вопросам лидерства, автор бестселлеров, проданных по всему миру более чем пять миллионов копий.


Путеводитель предпринимателя

Многие считают, что предпринимательству научить невозможно, но это не так. Выдающиеся бизнесмены не рождаются особенными, а просто создают хороший продукт. Все процессы, необходимые для запуска стартапа, соединены в этой книге в общий пошаговый план действий, который может понять и применить любой человек, приложив определенные усилия. Начинаете ли вы первое дело или запускаете очередной стартап – использование рекомендаций из этой книги повысит шансы вашего бизнеса на рынке и поможет вам создать продукт, который действительно нужен людям.


Монетизация инноваций. Как успешные компании создают продукт вокруг цены

Инновации являются важнейшим фактором роста. Сегодня, более чем когда-либо, компании должны внедрять инновации, чтобы выжить. Но успешные инновации – это очень непростая задача. Авторы – партнеры всемирно известной консалтинговой компании Simon-Kucher & Partners Strategy & Marketing Consultants знают о чем говорят. Георг Таке – ее генеральный директор, а Мадхаван Рамануджам – партнер в Сан-Франциско. Simon-Kucher & Partners – глобальная консалтинговая компания, насчитывающая 900 профессионалов в 33 офисах по всему миру.


Система инвестиционных взаимоотношений в регионе на примере республики Татарстан

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.