Искусственный интеллект на службе бизнеса - [14]

Шрифт
Интервал

.

Хокинс считает, что наш мозг постоянно делает прогнозы относительно всего, что мы испытаем в ближайшие мгновения: что увидим, почувствуем или услышим. С развитием и взрослением прогнозы становятся все точнее и чаще всего сбываются. Если же нет, мы замечаем несоответствие между предполагаемым и произошедшим, информация поступает в мозг, который обновляет свои алгоритмы и таким образом учится и совершенствуется.

Теорию Хокинса воспринимают неоднозначно. Его идеи обсуждаются в психологической литературе, а многие IT-специалисты категорически отрицают утверждение о коре головного мозга как модели для прогностических машин. Предположение, что ИИ может пройти тест Тьюринга (на способность обмануть человека, убедив его, что тоже является человеком), пока еще далеко от реальности. Современные алгоритмы не умеют убеждать, к тому же с ними сложно вести переговоры для выяснения основания их прогнозов.

Независимо от того, насколько уместна аналогия Хокинса, его утверждение о прогностике как базисе интеллекта удобно для понимания значения недавнего развития ИИ. Мы хотим подчеркнуть огромные последствия усовершенствования прогностических технологий. Теперь до вдохновенных идей Дартмутского семинара 1956 года рукой подать. Прогностические машины различными способами могут «использовать язык, оперировать абстрактными понятиями, решать разные типы задач, которыми сейчас [в 1955 году. Прим. авт.] занимаются люди, и самосовершенствоваться»[30].

Мы не строим домыслов о том, возвещает ли этот прогресс появление общего ИИ – приход технологической сингулярности, подобной «Скайнет». Однако, как вы убедитесь, если пристально посмотрите на прогностику, грандиозные перемены в ближайшие несколько лет вполне реальны.

Так же как дешевая арифметика с распространением компьютеров ознаменовала волну перемен в деловой и частной жизни, аналогичные преобразования не заставят себя долго ждать с удешевлением прогнозов.

Интеллект это или нет, но в целом переход от детерминированного программирования к вероятностному произошел скачком, хотя и параллельно с прогрессом в общественных и естественных науках. Канадский философ Ян Макдугалл Хакинг в книге «Укрощение случайности» сказал, что до начала XIX века вероятность была прерогативой азартных игроков[31]. С наступлением XIX века и ростом государственной статистики зарождающаяся вероятностная математика стала применимой к общественным наукам. В ХХ веке произошло фундаментальное изменение нашего понимания физики, и мы перешли от детерминистских ньютоновских взглядов к неопределенности квантовой механики. Важнейший прорыв XXI века в IT сравним с предыдущими достижениями в социальных и естественных науках: осознание того, что алгоритмы лучше работают с вероятностной структурой данных.

Выводы

• Цели машинного обучения отличаются от статистических. Статистика стремится к точности среднего показателя, в машинном обучении этого не требуется. Его цель – практическая эффективность. Смещение прогнозов допускалось при условии, что они были точнее (что стало возможным из-за увеличения мощности компьютеров). Это дало ученым простор для экспериментов и быстро принесло улучшения, благодаря которым стало возможным воспользоваться преимуществами большого объема данных и быстродействующих компьютеров, появившихся в последние годы.

• В традиционных статистических методах для спецификаций модели необходимы сформулированные гипотезы или, по крайней мере, человеческая интуиция. Машинное обучение не требует предварительной спецификации и вмещает в себя эквиваленты гораздо более сложных моделей с большим количеством взаимодействий между переменными.

• Прогресс машинного обучения называют достижением ИИ, поскольку:

• основанные на данном методе системы учатся и постепенно совершенствуются;

• системы выдают значительно более точные прогнозы, чем другие при аналогичных условиях, а некоторые специалисты считают прогностику базисом интеллекта;

• повышенная точность прогнозов таких систем позволяет им выполнять задачи, такие как языковой перевод и навигация, ранее считавшиеся прерогативой исключительно человеческого интеллекта.

• По поводу связи между прогнозом и интеллектом мы придерживаемся агностической точки зрения. Ни одно из наших заключений не основано на позиции, утверждающей, что достижения прогностики представляют собой интеллектуальные достижения. Мы рассматриваем последствия удешевления прогнозов, а не интеллекта.

Глава 3. Данные – это новая нефть

Хэл Вариан, ведущий экономист Google, в обращении к Роберту Гойцуэте из Coca-Cola сказал в 2013 году: «Миллиард лет назад появился современный “человек разумный”. Миллиард минут назад зародилось христианство. Миллиард секунд назад выпустили IBM PC. А миллиард поисковых запросов назад… наступило сегодняшнее утро»[32]. И Google – не единственная компания с неохватным объемом данных. Для всех, от гигантов вроде Facebook и Microsoft до местных государственных органов и стартапов, сбор данных стал проще и дешевле, чем когда-либо. Эти данные обладают ценностью. Миллиарды поисковых запросов – это миллиарды строк данных, с которыми Google совершенствует свои службы. Данные даже называют «новой нефтью».


Рекомендуем почитать
История ИП. История взлетов и падений одного российского индивидуального предпринимателя

Изначально эта книга называлась «Из грязи в князи и назад, и так много раз подряд». За 12 предпринимательских лет, прежде чем вывести на федеральный уровень архитектурно-брендинговую компанию DeVision, основать главный форум для застройщиков СНГ и вместе с партнерами создать девелоперскую компанию в Тюмени, я познал много падений – провел убыточное федеральное мероприятие в Москве, открыл и закрыл несколько ресторанов, многократно банкротился, пережил увольнение, пятисекундную остановку сердца и серьезную драму в личной жизни.


У вас есть 8 секунд

Практическое руководство по эффективной презентации, которое поможет захватить, контролировать и удерживать внимание слушателей. Хеллман раскрывает 3 ключевых способа выражения мыслей быстро, кратко и ярко. Книга включает в себя лайфхаки, упражнения и авторские методы, помогающие в выгодном свете представить себя независимо от того, выступаете ли вы перед аудиторией, продаете продукт или пишете электронное письмо.


Система инвестиционных взаимоотношений в регионе на примере республики Татарстан

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Маркетинг (Инновационный менеджмент)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Финансы: конспект лекций

Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.Предлагаемое пособие поможет студентам в решении именно этой задачи применительно к курсу «Финансы».Содержание и структура пособия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.Предназначено студентам высших учебных заведений.


Статистика: конспект лекций

Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует достаточно краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.Предлагаемое пособие поможет студентам в решении именно этой задачи применительно к курсу «Статистика».Содержание и структура пособия соответствуют требованиям Государственного образовательного стандарта высшего профессионального образования.Издание предназначено студентам высших учебных заведений.