Искусственный интеллект. Этапы. Угрозы. Стратегии - [10]
Итак, мы определили правило обучения. Чтобы получить агента, нам потребуется также правило принятия решений. Для этого мы наделяем агента «функцией полезности», которая присваивает каждому возможному миру определенное число. Это число представляет собой желательность соответствующего мира с точки зрения базовых предпочтений агента[38]. (Чтобы выявить действие с максимальной ожидаемой полезностью, агент мог бы составить список всех возможных действий. А затем рассчитать условное распределение вероятности с учетом каждого действия — то есть распределение вероятности, которое стало бы следствием обусловливания текущего распределения вероятности после наблюдения за результатами этого действия. И наконец, рассчитать ожидаемую ценность действия можно как сумму ценностей всех возможных миров, умноженных на условную вероятность этих миров с учетом осуществления действия[39].)
Правило обучения и правило принятия решений задают «определение оптимальности» агента. (В сущности такое же определение оптимальности широко используется в искусственном интеллекте, эпистемологии, философии науки, экономике и статистике[40].) В реальном мире такого агента получить невозможно, поскольку для проведения необходимых расчетов не хватит никаких вычислительных мощностей. Любая попытка сделать это приводит к комбинаторному взрыву вроде описанного нами при обсуждении КИИ. Чтобы представить это, рассмотрим крошечное подмножество всех возможных миров, состоящее из единственного компьютерного монитора, висящего в бесконечном пустом пространстве. Разрешение монитора — 1000 × 1000 пикселей, каждый из которых постоянно или светится, или нет. Даже такое подмножество всех возможных миров невероятно велико: количество возможных состояний монитора, равное 2>(1000 × 1000), превосходит объем всех вычислений, которые когда-либо будут выполнены в обозримой Вселенной. То есть мы не можем даже просто пронумеровать возможные миры в этом небольшом подмножестве всех возможных миров, не говоря уже о том, чтобы провести какие-то более сложные расчеты по каждому из них.
Но определение оптимальности может иметь теоретический интерес, даже несмотря на невозможность его физической реализации. Он представляет собой стандарт, с которым можно соотносить эвристические аппроксимации и который иногда позволяет нам судить, как именно поступил бы оптимальный агент в той или иной ситуации. С некоторыми альтернативными определениями оптимальности мы еще встретимся в двенадцатой главе.
Одно из преимуществ связи задачи обучения в определенных областях с общей задачей байесовского вывода состоит в том, что эти новые алгоритмы, делающие байесовский вывод более эффективным, немедленно приводят к прогрессу во множестве различных областей. Например, метод Монте-Карло непосредственно применяется в машинном зрении, робототехнике и вычислительной генетике. Еще одно преимущество заключается в том, что исследователям, работающим в различных областях, стало проще объединять результаты своих изысканий. Графовые модели и байесовские статистики представляют собой общий фокус исследований в таких областях, как машинное обучение, статистическая физика, биоинформатика, комбинаторная оптимизация и теория коммуникации[41]. Заметный прогресс в машинном обучении стал следствием использования формальных результатов, изначально полученных в других областях науки. (Конечно, машинное обучение значительно выиграло от появления более быстрых компьютеров и доступности больших наборов данных.)
Последние достижения
Во многих областях деятельности уровень искусственного интеллекта уже превосходит уровень человеческого. Появились системы, способные не только вести логические игры, но и одерживать победы над людьми. Приведенная в табл. 1 информация об отдельных игровых программах демонстрирует, как разнообразные виды ИИ побеждают чемпионов многих турниров[42].
Таблица 1. Игровые программы с искусственным интеллектом
Шашки. Уровень интеллекта выше человеческого.
Компьютерная игра в шашки, написанная в 1952 году Артуром Самуэлем и усовершенствованная им в 1955 году (версия включала модуль машинного обучения), стала первой интеллектуальной программой, которая в будущем научится играть лучше своего создателя[43]. Программа «Чинук» (CHINOOK), созданная в 1989 году группой Джонатана Шеффера, сумела в 1994 году обыграть действующего чемпиона мира — первый случай, когда машина стала победителем в официальном чемпионате мира. Те же разработчики, использовав алгоритм поиска «альфа-бета отсечение» в базе данных для 39 трлн эндшпилей, представили в 2002 году оптимальную версию игры в шашки — это программа, всегда выбирающая лучший из ходов. Правильные ходы обеих сторон приводят к ничьей[44]
Нарды. Уровень интеллекта выше человеческого.
Компьютерная игра в нарды, созданная в 1970 году Хансом Берлинером и названная им BKG, в 1979 году стала первой интеллектуальной программой, обыгравшей чемпиона мира в показательном матче — хотя впоследствии сам Берлинер приписывал эту победу удачно брошенным костям
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.