ИИ-2041. Десять образов нашего будущего - [15]
Нейронная сеть глубокого обучения, обученная отличать фото кошек от фотографий, на которых изображено что-то другое
В ходе этого процесса глубокая нейросеть математически обучается (или «тренируется») максимизировать значение «целевой функции». В нашем примере с распознаванием кошки такой целевой функцией является вероятность правильного распознавания «кошка» — «не кошка».
После такой тренировки сеть глубокого обучения, по сути, становится гигантским математическим уравнением; его можно протестировать на изображениях, которых она до этого не видела, и убедиться, что сеть путем «умозаключений» способна определить наличие или отсутствие в этих изображениях кошки.
С появлением глубокого обучения совершенно непрактичные ранее возможности ИИ стали пригодными для применения во многих областях и сферах. На следующей диаграмме наглядно показано, как резко сократилось число ошибок распознавания образов, когда начали использовать технологии глубокого обучения.
Глубокое обучение — это технология универсального применения, ее можно использовать практически в любой области для распознавания образов, прогнозирования, классификации данных, принятия решений или синтеза. Возьмем сферу страхования, о которой идет речь в рассказе «Золотой слон».
ИИ в приложениях Ganesh Insurance предобучили оценивать вероятность развития у клиента компании серьезных проблем со здоровьем и соответствующим образом корректировать его страховой взнос.
Чтобы сеть научилась отделять тех, у кого с большой вероятностью возникнут такие проблемы, от тех, у кого они, скорее всего, не возникнут, ИИ «тренируют» на обучающих данных, включающих в себя информацию обо всех прошлых заявителях на получение страховки, обо всех их обращениях в медицинские учреждения с разными жалобами и об их семьях. Каждый случай маркируют на выходном слое меткой «обращался с серьезными медицинскими проблемами» или «не обращался с серьезными медицинскими проблемами».
Использование глубокого обучения привело к существенному снижению частоты ошибок при распознавании объектов компьютерным зрением
Впитав в себя в процессе предобучения весь этот набор данных, ИИ может делать предсказания вероятности возникновения у заявителя серьезных проблем со здоровьем и решать, одобрять заявку на страхование или нет, и если да, то каким при этом должен быть страховой взнос.
Обратите внимание: в данном сценарии ни одному человеку не придется маркировать претендента на оформление страховки как объект, имеющий риски с точки зрения здоровья или же не имеющий таковых. Эти метки основываются исключительно на «достоверной информации» (например, были ли у претендента на оформление страховки серьезные жалобы на здоровье в прошлом).
Первая научная статья о глубоком обучении вышла еще в 1967 году. Потребовалось более полувека, чтобы эта технология проявила себя. Это заняло так много времени, потому что для обучения искусственной нейронной сети требуется огромное количество данных и вычислительных мощностей. И если вычислительные мощности — двигатель ИИ, то данные — его топливо.
Вычисления стали достаточно быстрыми для эффективного применения технологии глубокого обучения только в последнее десятилетие, и мы наконец научились собирать достаточное количество данных. Смартфон, которым вы пользовались сегодня, обладает в миллионы раз большей вычислительной мощностью, чем компьютеры НАСА, отправившие Нила Армстронга на Луну в 1969 году. А интернет 2020 года почти в триллион раз больше интернета 1995 года.
Глубокое обучение — результат озарения человеческого мозга, но работают они совершенно по-разному. Глубокому обучению требуется гораздо больше данных, чем человеку, но после обучения работе с ними технология значительно превосходит людей в решении многих задач, особенно связанных с количественной оптимизацией (например, выбор рекламного объявления для максимизации вероятности покупки или поиск нужного лица среди миллионов других).
Люди могут одновременно сосредоточиваться на ограниченном количестве объектов, а алгоритм, предобученный на океане информации, выявляет корреляции между неявными признаками, слишком незаметными или сложными для человека.
Кроме того, в процессе предобучения на огромном объеме данных глубокое обучение может подстраиваться под отдельных пользователей, базируясь на их паттернах поведения, равно как и на аналогичных шаблонах у других пользователей. Например, когда вы посещаете Amazon, ИИ этого веб-сайта выделяет или подсвечивает продукты, которые, скорее всего, должны вас заинтересовать и, соответственно, максимально увеличат ваши расходы.
А контент на вашей странице в Facebook должен удержать вас в соцсети как можно дольше. ИИ Amazon и Facebook таргетированный (узконаправленный); он предлагает каждому человеку разный, но персонализированный контент. Это значит, что показанный мне контент, скорее всего, сильно повлияет на меня, но может совершенно не сработать в вашем случае. Подобная узкая нацеленность гораздо эффективнее генерирует клики и покупки, чем универсальный подход традиционных статических веб-сайтов.
Мими тонет в мусоре. Она работает на Кремниевом острове, где электроника – от сотовых телефонов и ноутбуков до роботов и бионических конечностей – отправляется на переработку. Отходы скапливаются и загрязняют каждый свободный дюйм земли. На этом острове у берегов Китая плоды капитализма и культуры потребления находят свой конец. Тысячи рабочих-мигрантов, таких как Мими, заманиваются на Кремниевый остров обещаниями стабильной работы и лучшей жизни. Назревает конфликт между безжалостными местными бандами, борющимися за власть.
Кай-Фу Ли – один из известнейших экспертов в области искусственного интеллекта. За долгую и блестящую карьеру он узнал изнутри, как работают Кремниевая долина США и IT-отрасль Китая, поэтому с уверенностью делает прогнозы о том, кто и почему победит в гонке ИИ. Но эта победа может обернуться безработицей и невиданным социальным расслоением по всему миру. Катастрофа почти неизбежна, но после серьезнейшего личного кризиса Кай-Фу Ли увидел неожиданный выход. Его укажут человечность и ответственность, а вовсе не армия умных машин. На русском языке публикуется впервые.
Экономический рост и неравенство – две главные загадки, относительно которых у экономистов существует множество теорий, но нет единственного правильного ответа. Каким образом двести лет назад человечество сумело преодолеть многовековую стагнацию и радикально улучшить качество своей жизни? И почему этот взрывной экономический рост произошел в разных странах по-разному, породив неравенство? В книге «Путь человечества» экономист с мировым именем, профессор Брауновского университета Одед Галор дает свои ответы на эти два вопроса и в свете них предлагает взглянуть на перспективы преодоления глобального экологического кризиса, с которым человечество столкнулось сегодня. В формате PDF A4 сохранён издательский дизайн.
«Политическая экономия капитализма» — учебное пособие, охватывающее все темы курса политической экономии по разделу «Капиталистический способ производства», — написано по новой схеме. Автор отказался от расчленения политической экономии капитализма на две части — теорию домонополистического капитализма и теорию империализма. Считая необходимым изучать в курсе политической экономии современный капитализм, автор строит изложение таким образом, что общетеоретические проблемы и проблемы империализма рассматриваются не изолированно, а в органической связи.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Предлагаемая читателю книга известного советского государственного деятеля А. Лозовского (1878–1952) посвящена вопросам тактики и стратегии стачечного движения. Задача книги — в максимально сжатой форме поставить основные проблемы стачечной тактики, указать на связь экономики с политикой, на необходимость использования богатейшего опыта экономической борьбы, на возможность применения в стачечном движении многих правил, установленных военной наукой, а также на связь между экономическими и политическими стачками, восстанием и борьбой за власть. Рекомендуется историкам, социологам, политологам, активистам профсоюзного движения, широкому кругу заинтересованных читателей. Источник книги находится по адресу https://work-way.com/literatura Книга ёфицирована.
Предлагаемое читателям специальное исследование посвящено вопросам совершенствования финансово-кредитной системы Российской Федерации в существующей экономической теории.В работе впервые изложены теоретико-методологические основы формирования, учета и использования показателей социальной эффективности для рациональной организации финансово-кредитной деятельности социальной направленности, оценки целесообразности инвестиционной политики и стратегии социально-экономического развития различных форм организации общества на современном этапе.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Иван Чаплыгин рассказывает о сложных отношениях внутри пары автор – переводчик. Он позволит заглянуть на переводческую кухню и буквально на пальцах покажет, чем хороший перевод отличается от посредственного и откровенно плохого. Иван расскажет о чувстве слова, неоправданной русификации и переводческих головоломках. О заслуженной критике и необоснованных придирках. А еще о конкуренции среди переводчиков, о поиске заказчиков и об удовольствии от работы. Эта книга поможет вам понять, как находить суть в мутной воде авторского высказывания и как передавать смысл, не искажая оригинал и не привнося в него собственное звучание.
Скотт Янг, изучив результаты последних исследований и опыт выдающихся личностей, нашел те методы обучения, которые дают максимальный эффект: позволяют лучше понять и запомнить информацию, а также раскрыть новые таланты. Он сформулировал девять принципов быстрого самообразования, позволяющие осваивать сложные навыки, получать необходимые знания, максимизировать конкурентные преимущества и выстраивать карьеру. Эти принципы пригодятся всем, кто хочет научиться чему-либо самостоятельно: овладеть языком (или несколькими языками), получить новую профессию или освоить несколько инструментов для создания продукта или бизнеса с нуля. На русском языке публикуется впервые.
Книга о корпоративной культуре Netflix, которая построена вокруг свободы и ответственности. Именно культура позволила компании вырасти из небольшой фирмы по прокату DVD в гиганта развлекательной индустрии.
Рэй Далио, успешный инвестор и один из самых влиятельных людей планеты, основатель компании Bridgewater, исследует империи прошлого, выявляет закономерности взлетов и падений ведущих мировых экономик и делает выводы относительно настоящего и будущего в сфере макроэкономики и геополитики.