Идиот или гений? Как работает и на что способен искусственный интеллект - [14]
Метод обратного распространения ошибки будет работать (по крайней мере теоретически) вне зависимости от того, сколько в вашей нейронной сети входных сигналов, скрытых ячеек и выходных ячеек. Хотя нет математической гарантии, что метод обратного распространения ошибки остановится на верных весах для сети, на практике он прекрасно справляется со многими задачами, которые слишком сложны для простых перцептронов. Так, я натренировала и перцептрон, и двухслойную нейронную сеть, имеющие по 324 входных сигнала и 10 выходных сигналов, распознавать рукописные цифры, применив шестьдесят тысяч примеров, а затем протестировала каждую из систем на десяти тысячах новых примеров. Перцептрон выдавал верный ответ примерно в 80 % случаев, а нейронная сеть с 50 скрытыми ячейками верно распознала целых 94 % новых примеров. Слава скрытым ячейкам! Но чему именно научилась нейронная сеть, чтобы обойти перцептрон? Я не знаю. Возможно, я могла бы найти способ визуализировать 16 700 весов[43] нейронной сети, чтобы пролить свет на ее работу, но я этого не сделала. В целом людям непросто понять, как эти сети принимают решения.
Важно отметить, что я использовала в качестве примера распознавание рукописных цифр, но нейронные сети можно применять не только к изображениям, но и к любым другим типам данных. Нейронные сети используются в столь разных областях, как распознавание речи, прогнозирование динамики фондового рынка, переводы с языка на язык и сочинение музыки.
Коннекционизм
В 1980-х годах самой заметной из работавших над нейронными сетями групп была команда Калифорнийского университета в Сан-Диего, возглавляемая двумя психологами, Дэвидом Румельхартом и Джеймсом Макклелландом. То, что мы сегодня называем нейронными сетями, в те годы обычно именовали коннекционистскими сетями, поскольку в их основе лежала идея, что знания этих сетей заключены во взвешенных связях (англ. connections) между единицами. Команда Румельхарта и Макклелланда прославилась составлением так называемой библии коннекционизма – двухтомного трактата “Параллельная распределенная обработка данных”, опубликованного в 1986 году. Хотя в области ИИ в то время доминировал символический подход, в книге продвигался субсимволический ИИ и утверждалось, что “люди умнее современных компьютеров, потому что мозг использует базовую вычислительную архитектуру, гораздо лучше подходящую для… решения естественных задач по обработке информации, с которыми так хорошо справляются люди”, например “распознавания объектов в естественных средах и анализа их взаимодействий… понимания языка и извлечения релевантной информации из памяти”[44]. Авторы пришли к выводу, что “символические системы, любимые Минским и Пейпертом”[45], не смогут воссоздать эти человеческие способности.
К середине 1980-х экспертные системы – методы символического ИИ, в основе которых лежат разработанные людьми правила, отражающие экспертные знания в конкретной сфере, – все чаще демонстрировали свою хрупкость: они были ненадежны и часто не справлялись с обобщением и адаптацией к новым ситуациям. Анализируя ограничения таких систем, ученые обнаружили, до какой степени разрабатывающие правила эксперты полагаются на бессознательное знание – или здравый смысл, – чтобы действовать разумным образом. Этот здравый смысл сложно было заложить в запрограммированные правила или логическую дедукцию, а его нехватка сильно ограничивала любое широкое применение методов символического ИИ. Иными словами, после цикла больших обещаний, огромных финансовых вливаний и шумихи в прессе символический ИИ снова оказался на пороге зимы.
По мнению сторонников коннекционизма, ключом к разумности была подходящая вычислительная архитектура – выстроенная по образу и подобию мозга – и способность системы к самостоятельному обучению на основе данных или действий. Команда под руководством Румельхарта и Макклелланда создавала коннекционистские сети (программно реализованные) как научные модели человеческого обучения, восприятия и развития речи. Хотя производительность этих сетей и близко не подходила к человеческому уровню, различные сети, описываемые в “Параллельной распределенной обработке данных” и других работах, оказались достаточно интересными артефактами ИИ, чтобы на них обратили внимание многие люди, включая сотрудников финансирующих организаций. В 1988 году высокопоставленный чиновник Управления перспективных исследовательских проектов Министерства обороны США (DARPA), которое обеспечивало львиную долю финансирования исследований ИИ, заявил: “Я уверен, что технология, к разработке которой мы приступаем [то есть нейронные сети], важнее атомной бомбы”[46]. И вдруг нейронные сети снова оказались “в игре”.
Плохо с логикой, хорошо с фрисби
За последние шесть десятилетий исследований ИИ дебаты об относительных преимуществах и недостатках символического и субсимволического подхода возникали не раз. Символические системы могут проектироваться людьми, наделяться человеческими знаниями и использовать понятную человеку логику для решения задач. Так, экспертная система MYCIN, разработанная в начале 1970-х годов, применяла около шестисот правил, чтобы помогать врачам диагностировать и лечить заболевания крови. Программисты MYCIN создали эти правила на основе подробных интервью с высококвалифицированными врачами. Получая симптомы и результаты анализов пациента, MYCIN применяла логику и вероятностные рассуждения в сочетании с правилами, чтобы поставить диагноз, а потом могла объяснить ход своей мысли. Иными словами, MYCIN была хрестоматийным примером символического ИИ.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.