Химия вокруг нас - [19]

Шрифт
Интервал

и Fe>3+. Стекольное сырье трудно очищается от железа и поэтому в дешевых сортах оно всегда присутствует. Ионы Fe>2+ хорошо поглощают лучи света с длиной волны примерно 600 ммк (желтые и красные) и, следовательно, окрашивают стекло в дополнительный голубой цвет. Ионы Fe>3+ поглощают лучи с длиной волны 500 ммк (синие и фиолетовые), окрашивая стекло в желтоватый цвет. Важно отметить, что ионы Fe>2+ в области видимого света имеют удельное поглощение, примерно в 10 раз большее, чем ионы Fe>3+. Поскольку в стекле одновременно содержатся как ионы Fe>2+, так и ионы Fe>3+, они и придают стеклу зеленоватую окраску (бутылочный цвет).

Существуют химические и физические способы обесцвечивания стекла. В химическом способе стремятся все содержащееся железо перевести в Fe>3+. Для этого в шихту вводят окислители — нитраты щелочных металлов, диоксид церия CeO>2, а также оксид мышьяка (III) As>2O>3 и оксид сурьмы (III) Sb>2O>3. Химически обесцвеченное стекло лишь слегка окрашено (за счет ионов Fe>3+) в желтовато-зеленоватый цвет, но обладает хорошим светопропусканием. При физическом обесцвечивании в состав стекла вводят «красители», т.е. ионы, которые окрашивают его в дополнительные тона к окраске, создаваемой ионами железа, — это оксиды никеля, кобальта, редкоземельных элементов, а также селен. Диоксид марганца MnO>2 обладает свойствами как химического, так и физического обесцвечивания. В результате двойного поглощения света стекло становится бесцветным, но его светопропускание понижается. Таким образом, следует различать светопрозрачные и обесцвеченные стекла, поскольку эти понятия различны.

Следует также отметить, что окрашенное стекло иногда предохраняет содержимое бутылок от нежелательного фотохимического воздействия. Поэтому окраску бутылочного стекла иногда специально усиливают.

Одним из важнейших свойств стекла является прозрачность. Однако в ряде случаев стеклу специально придают непрозрачность путем его «глушения». Это процесс, в результате которого стекло становится непрозрачным. Вещества, способствующие помутнению стекла, называют глушителями. Глушение происходит вследствие распределения по всей массе стекла мельчайших кристаллических частиц. Они представляют нерастворившиеся частицы глушителя или частицы, выделившиеся из жидкой массы при охлаждении стекла. Эти частицы обычно прозрачны, но их показатель преломления отличается от показателя преломления стекла. Поэтому падающий на них луч отклоняется от прямолинейного направления и стекло перестает быть прозрачным. В далеком прошлом в качестве глушителей стекла использовали костяную муку, содержащую фосфат кальция Ca>3(PO>4)>2, а также оксиды олова SnO, мышьяка As>2O>3 и сурьмы Sb>2O>3. В настоящее время для этой цели применяют криолит Na>3[AlF>6], плавиковый шпат CaF>2 и другие фторидные соединения.

Сильно заглушенное стекло (белого цвета) называют молочным. Для его изготовления чаще всего используют криолит. Молочное стекло используют главным образом для изготовления осветительной арматуры.

Несмотря на то что возраст стеклоделия оценивается в 6 тыс. лет, прозрачное и бесцветное стекло люди научились варить лишь на пороге новой эры. До этого производилось непрозрачное окрашенное в различные тона стекло и из него изготавливались главным образом мелкие изделия: бусы, браслеты, пуговицы, кольца, печатки, шахматные фигуры и др. Стеклодувы античной эпохи начали широко применять холодную обработку стекла: рельефную резьбу, гравировку, шлифовку. Как только было получено прозрачное стекло, стеклоделы стали стремиться изготовить из него оконные пластины. Ученые предполагают, что оконное стекло вначале было цветным. Это объясняется тем, что бесцветное стекло получить было весьма непросто, так как сырье обычно содержит различные примеси, которые придают стеклу окраску. Особенно часто в сырье присутствуют соединения железа. Получение пластин для остекления окон оказалось весьма непростым делом. Изготовление полых изделий довольно сложной формы путем выдувания для человека было более простой задачей, чем получение листового стекла. Эта задача была решена лишь к концу средневековья. При раскопках Помпеи, погребенной под пеплом вулкана Везувия в 79 г. н.э., было установлено, что в очень редких случаях в окна были вставлены пластины стекла, которые были довольно толстыми. По-видимому, тонкое листовое стекло итальянские стеклоделы еще не научились делать.

Считают, что метод выдувания, так же как и способ варки прозрачного стекла, был открыт в период смены летоисчисления. Поводов для его открытия было предостаточно. Для получения высоких температур в металлургии был уже известен способ дутья. При варке стекла, требующей также высоких температур, дутье, в частности, проводилось при помощи легких человека. Для этого использовались длинные и полые тростниковые трубки, конец которых обмазывался глиной. Последнее было необходимо для того, чтобы трубка не загоралась. Таким образом, для открытия метода выдувания стеклянных изделий были созданы все предпосылки. Нужен был только случай, когда конец трубки прикоснется к жидкой стекольной массе. Если это произошло, то, продолжая дуть в трубку, человек должен получить что-то похожее на пузырь. Следующим шагом было помещение выдуваемого «пузыря» в деревянную форму, и полое стеклянное изделие почти готово. Как здесь не вспомнить хорошо известное изречение, что «все гениальное просто».


Рекомендуем почитать
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи

В книге рассказывается об истории развития основных направлений в квантовой химии. Авторы приводят разнообразный и малоизвестный материал, вводят читателя в круг основных понятий этой науки. Особое внимание уделяется физическому смыслу наиболее важных из них: квантовое число, валентность, молекулярная орбиталь, химическая связь и т. п. Авторы не только прослеживают историческую эволюцию системы понятий теоретической химии начиная с XIX века и до наших дней, но и показывают логическую связь между классическими и квантовыми понятиями.


Пути развития химии. Том 1. От первобытных времен до промышленной революции

Вопреки сложившейся традиции излагать историю науки как историю идей и теорий автор из ГДР В. Штрубе дает оригинальную трактовку развития науки: он стремится показать, как открытия, изобретения, накопление новых знаний и становление научной химии способствовали развитию общества. Для широкого круга читателей.


Карнавал молекул. Химия необычная и забавная

Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты. В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов.


Пуговицы Наполеона: Семнадцать молекул, которые изменили мир

Сенсационное разоблачение! Пенни Лекутер, преподаватель химии из Канады, и практикующий американский химик Джей Берресон показывают изнанку всемирной истории. Не боги, не цари, не герои, не массы и даже не большие идеи — миром правит химия. Невидимые глазу молекулы приводят в движение народы, армии и флоты, рождают и обращают в прах города и целые цивилизации, двигают горы и толкают людей на великие подвиги, чудовищные преступления и грандиозные авантюры…Авторы рисуют портреты семнадцати молекул, оказавших и оказывающих самое значительное влияние на нас и нашу планету.


Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологического прошлого

В книге рассказывается «о том, как устроена биосфера и что осталось от биосфер геологического прошлого». Показан основополагающий вклад В. И. Вернадского в учение о биосфере и о роли жизни в геологических процессах. Большое внимание уделяется новейшим научным открытиям, в частности удивительным оазисам жизни, обнаруженным в рифтовых зонах Мирового океана на глубине 1500—3000 м.Автор: А. В. ЛАПО — кандидат геолого-минералогических наук, старший научный сотрудник Всесоюзного научно-исследовательского геологического института имени А. П. Карпинского в Ленинграде.


Химический язык насекомых

В жизни насекомых чрезвычайно большую роль играют запахи. Общаясь между собой при помощи пахучих молекул-феромонов, шестиногие «рассказывают» об источнике пищи, образуют брачные пары, охраняют свое жилище, метят «владения». О том, как ученые разгадали тайну химического языка насекомых, синтезировали феромоны в лабораториях и разработали способы их практического применения, узнает читатель этой книги.Ее с увлечением прочтут те, кто интересуется прикладной энтомологией и вопросами охраны окружающей среды.