Химический язык насекомых - [19]
Насекомые значительно уступают по размерам тела млекопитающим и поэтому обладают меньшим числом чувствительных клеток. Например, у кролика в обонятельном эпителии их около 100 млн., а у гусеницы бражника всего 48. Вместе с тем по способности распознавать запахи насекомые не уступают крупным животным. Количество перекрыто качественным показателем — специализацией. Обонятельные сенсиллы хеморецепторных органов насекомых обладают более высокой специфичностью и избирательностью по сравнению с аналогичными органами позвоночных животных.
Наука достигла больших успехов в создании приборов, позволяющих заглянуть в глубь клетки или в просторы Вселенной, но до сих пор ученые так и не смогли сконструировать надежный «искусственный нос», способности которого хотя бы отдаленно приближались к возможностям обонятельных рецепторов насекомых.
Чувствительность усиков-«антенн», которые «вылавливают» из моря запахов молекулы определенных пахучих веществ, поразительна. Обонятельная система насекомых различает такие концентрации веществ (порядка 10...100 молекул в 1 см³), восприятие которых недоступно для современных аналитических приборов. С такой чувствительностью не сравнится ни один «искусственный нос».
В изучение механизма восприятия молекул химических веществ органами чувств насекомых большой вклад внес крупный советский энтомолог Ю. А. Елизаров. Его монография «Хеморецепция насекомых» стала своеобразным «островком знания» в океане еще неразгаданных тайн мира насекомых.
В этой научной работе, в частности, приводятся несколько вариантов классификации хеморецепторных сенсилл, в том числе и по их наружной морфологии.
Установлено, что бывают длинные прямые волоски и слегка изогнутые (хетоидные и трихоидные сенсиллы). Первые встречаются на «антеннах» жуков-короедов, а вторые — на хоботках мух, а также на усиках самцов бабочек сатурний и других видов чешуекрылых.
Среди хеморецепторов наиболее распространены короткие волоски, или конусы с закрепленными кончиками, — базикоконические сенсиллы. Их находят на «антеннах» и других частях тела различных насекомых. Известны также стилоконические сенсиллы — крошечные чувствительные конусы, обнаруженные на усиках бабочек, булавовидные — найденные у комаров и москитов, целоконические, расположенные на «антеннах» самцов и самок тутового шелкопряда. Принцип работы у всех сенсилл одинаков.
В выборе форм природа оказалась чрезвычайно изобретательной, не обойдя практически ни одной из известных нам геометрических форм.
Окончательно классифицировать сенсиллы помогут совместные работы энтомологов и химиков, оснащенных самой современной электронной аппаратурой и новейшими методами электрофизиологических исследований.
Научный совет по комплексной проблеме «Кибернетика» АН СССР, Институт зоологии и паразитологии АН Литовской ССР начиная с 1971 г. проводят в Вильнюсе Всесоюзные симпозиумы по хеморецепции насекомых. Ученые докладывают о своих работах в области морфологии чувствительных органов насекомых, а также обсуждают новые методики проведения исследований.
Ученые долго не имели данных о чувствительных клетках «антенн» такого широко распространенного вредителя, как яблонная плодожорка. Но в настоящее время биологи изучают способы получения этим вредителем информации извне, так как это может помочь в разработке новых методов борьбы с ним.
«Антенны» яблонной плодожорки вооружены трихоидными, стилоконическими и целоконическими сенсиллами. На одну «антенну» у самцов в среднем приходилось от 5000 до 8000 трихоидных сенсилл, что в 2 раза больше, чем у самок, а целоконических и стилоконических — около 400 и 40 соответственно. Энтомологи предполагают, что разница в количестве трихоидных сенсилл у разных полов яблонной плодожорки объясняется тем, что у самцов они играют более важную роль, чем у самок, так как воспринимают половые феромоны, которые выделяют девственные самки.
Чтобы представить всю сложность работы исследователей, остается назвать размеры объектов, с которыми приходилось работать. Длина самой большой сенсиллы около 50 мкм, а самой маленькой — 9...10 мкм. Даже фильтрующий вирус табачной мозаики по сравнению с сенсиллой выглядит великаном, он примерно в 10 раз больше сенсиллы!
Академик А. Е. Ферсман как-то заметил: «Без хронологии нет истории, как без истории нет науки». Методика получения электроантеннограмм (ЭАГ) сравнительно молода, но и она уже имеет свою историю.
Электрофизический метод изучения обонятельных органов насекомых ученые впервые применили примерно четверть века назад. В его основу был положен принцип регистрации биоэлектрических потенциалов живых организмов.
Практически исследования проводились следующим образом. В полость «антенны» насекомого-самца вводили микроэлектроды. Затем ее обдували воздухом, содержащим половые аттрактанты этого вида шестиногих. Специальные датчики определяли длительность раздражения обонятельных органов насекомого и регистрировали отклонение биоэлектрического потенциала. Эти данные записывались приборами в виде графиков, расшифровав которые исследователи получили ценный научный материал.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Главное внимание автор уделил людям – своим героям, дальневосточным рыбакам, живущим и работающим на этих «физически и морально устаревших» железяках и успешно кормящих страну. Автор провёл с ними в море более половины этого самого ПОЛУВЕКА.Книга будет полезна курсантам училищ, студентам и преподавателям вузов, научным сотрудникам и всем, кто специализируется в областях, связанных с рыбным хозяйством.
В монографии охарактеризована практика участия российской общественности в принятии экологически значимых решений в период перехода страны от социалистической плановой экономики к рыночной. Основой анализа послужили документы, относящиеся к конкретным проектам, которые подвергались государственной экологической экспертизе (ГЭЭ), общественной экологической экспертизе (ОЭЭ) и сопровождались материалами оценки воздействия на окружающую среду (ОВОС) или другими подобными оценками. Исследовано около 40 таких проектов, выполнявшихся в четырех регионах России.
Александр Иванович Опарин — член-корреспондент Академии наук СССР, один из ведущих биохимиков Советского Союза.Основные экспериментальные работы А. И. Опарина посвящены изучению обмена веществ у растений.А. И. Опарин — основатель особой отрасли знания: технической биохимии.Происхождение жизни — это та проблема, над которой А. И. Опарин работает уже в течение 25 лет и в области которой он является признанным авторитетом не только у нас, но и за рубежом. Его перу принадлежит ряд книг и популярных брошюр по этому вопросу, многие из них переведены на иностранные языки.А.
Книга известного ученого состоит из коротких новелл, рассказывающих о разнообразной и многоликой природе пустыни. Внимание автора привлекают главным образом мелкие обитатели пустынь Средней Азии: муравьи, пауки, клещи, гусеницы и бабочки, жуки, пчелы и осы. Мир этих существ пока еще мало известен, а потому наблюдения за ним не только интересны, но и весьма полезны.
В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.