Хаос. Создание новой науки - [97]

Шрифт
Интервал

Сидя в кафе, они забавлялись тем, что спрашивали: далеко ли отсюда находится ближайший странный аттрактор? Уж не то ли это дребезжащее автомобильное крыло? Или флаг, трепещущий от легкого ветерка? Дрожащий лист на ветке? «Вы не увидите объект до тех пор, пока верно выбранная метафора не позволит воспринять его», — замечал Шоу, вторя Томасу С. Куну. Вскоре их друг Билл Бёрк, занимавшийся теорией относительности, окончательно убедился, что спидометр его машины работает в свойственной странному аттрактору нелинейной манере. Шоу, приступая к экспериментальному проекту, который займет его на ближайшие несколько лет, выбрал самую простую динамическую систему, какую только мог себе представить физик, — подтекающий кран. Большинство людей полагают, что в поведении этой системы непременно обнаруживается периодичность, но, как свидетельствуют эксперименты, это не совсем верно. «Перед нами простой пример системы, которая переходит от периодичного поведения к непериодичному, — объяснял Шоу. — Если немного приоткрыть кран, дробь капель станет беспорядочной. Как выясняется, по прошествии небольшого периода времени ее уже нельзя предугадать. Таким образом, даже нечто простое, вроде водопроводного крана, может считаться вечно созидающим информацию объектом».

Казалось бы, о чем тут думать? Подтекающий кран порождает лишь капли, каждая из которых почти повторяет собой предыдущую. Однако для новоиспеченного исследователя хаоса этот объект заключает в себе два преимущества: во-первых, всякий мог его представить; во-вторых, поток информации одномерен настолько, насколько это возможно: ритмичная барабанная дробь отдельных капель измеряется во времени. Ни одним из перечисленных достоинств не обладали системы, которые позже изучались группой. Не были они присущи ни иммунной системе человека, ни сталкивающимся пучкам, которые необъяснимым образом снижали коэффициент полезного действия линейного ускорителя в Стэнфорде. Ученые-экспериментаторы вроде Либхабера и Суинни получали одномерный поток информации путем произвольного закрепления детектора в одной из точек чуть более сложной системы. В подтекающем кране единственная линия данных представляет собой все, что имеется в наличии. Это даже не постоянно меняющаяся вязкость или температура — это всего лишь момент падения капли.

Если физик-традиционалист попробует подступиться к такой системе, он, вероятно, начнет с того, что создаст максимально законченную ее модель. Процессы, управляющие формированием и падением капель, вполне понятны, хотя и не столь просты, как может показаться. Одним из немаловажных параметров является скорость течения жидкости. (Она была невысокой в сравнении со скоростью большинства гидродинамических систем. В эксперименте Шоу частота падения капель составляла от 1 до 10 в секунду, что соответствовало скорости течения жидкости из крана от 30 до 300 галлонов в две недели.) К другим параметрам относятся вязкость жидкости и поверхностное трение. Капля воды, висящая на кончике крана и готовая вот-вот сорваться вниз, принимает сложную трехмерную форму. Один только расчет ее конфигурации был, по выражению Шоу, «сродни высокому искусству». К тому же указанная форма далеко не статична. Капля подобна небольшому эластичному мешочку, обладающему поверхностным натяжением. Качаясь туда-сюда, он набирает массу и растягивается до тех пор, пока не минует критическую точку и не упадет. Если физик попробует построить полную модель падения капель, составит дифференциальные уравнения с подходящими граничными условиями и попытается затем решить их, он обнаружит, что оказался в непроходимом лесу.

Альтернативный подход к проблеме заключается в том, чтобы, забыв о физике, рассматривать только информацию — так, будто она исходит из некоего «черного ящика». Но что может сказать эксперт по динамике хаоса, имея перечень чисел, интервалов между падением отдельных капель? Как выяснилось, кое-какие методы анализа таких данных имелись и могли прояснить некие детали физической картины, что, собственно, стало решающим в деле применения хаоса к задачам реального мира.

Но Шоу, отвергнув крайности, начал с золотой середины. Он создал своеобразную пародию на завершенную физическую модель. Не принимая во внимание ни форму капель, ни их сложные движения в трех измерениях, он лишь грубо смоделировал падение капель — уподобил их грузу, который висит на равномерно удлиняющейся пружине. По мере возрастания веса пружина растягивается, и груз опускается все ниже. По достижении определенной точки часть груза, отломившись, отделяется. Какая именно часть отделится, по предположению Шоу, будет зависеть непосредственно от скорости падения груза в точке отрыва.

Потом, естественно, пружина с остатком груза подскочит вверх, производя те самые колебания, которые аспиранты при построении моделей описывают с помощью стандартных уравнений. Интересное свойство системы — единственное интересное свойство, определяющее нелинейный изгиб, который делает возможным хаотичное поведение, — заключалось в том, что момент отрыва следующей капли зависел от взаимодействия колебаний пружины с увеличением веса груза. Скачок вниз, вероятно, помогал грузу достичь точки отрыва гораздо быстрее, а движение вверх слегка замедляло этот процесс. В реальности не все капли, образуемые подтекающим водопроводным краном, имеют одинаковый размер. Он меняется в зависимости от скорости течения, а также от сжатия или растяжения «пружины». Если капля рождается при движении вниз, она срывается быстрее, в противном случае она сможет вобрать в себя немного больше жидкости, прежде чем упадет. Сконструированная Шоу модель была достаточно «примитивной», чтобы ее удалось описать тремя дифференциальными уравнениями — минимально необходимым для моделирования хаоса количеством, как наглядно продемонстрировали Лоренц и Пуанкаре. Но позволяла ли она генерировать сложность, равнозначную реальной? И являлась ли сия сложность хаотической?


Еще от автора Джеймс Глик
Путешествия во времени. История

Джеймс Глик, американский журналист и автор научно-популярных книг, исследует идею путешествий во времени и связанные с ней научные концепции и парадоксы. Он рассказывает, как она возникла и как развивалась — в науке и культуре — и как менялось само восприятие времени. Он показывает, что эта идея прочно вошла в современную культуру и присутствует и в современной физике, и в художественной литературе, и в искусстве. Книга будет интересна всем путешественникам во времени.На русском языке публикуется впервые.


Гений. Жизнь и наука Ричарда Фейнмана

Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.


Рекомендуем почитать
Эпоха дополненной реальности

В своей книге Бретт Кинг, автор бестселлеров, эксперт-футуролог, известный журналист и телеведущий, рисует яркую картину будущего. Это время, когда дополненная реальность – интернет-медицина, искусственный интеллект, роботы, умные вещи и города – станет повседневной нормой. Ближайшие два десятилетия принесут человечеству намного больше изменений, чем минувшие 250 лет. Исследуя вопрос, как новые технологии повлияют на человека, общество и государства, Бретт Кинг приходит к оптимистичному выводу. Он уверен, что инновации будут использованы во благо: возникнут новые творческие профессии, сократятся часы работы, вырастут доходы. Эта книга интересна и полезна каждому: она расширяет горизонты знаний о дополненной реальности и готовит нас к грядущим переменам.


Человек и компьютер: Взгляд в будущее

Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин? Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта.


Удивительное рядом: самые необычные природные явления

Самые необычные природные явления: брайникл, фата-моргана, прибрежное капучино, огни Святого Эльма, шаровая молния, огненная радуга, огненный вихрь, двояковыпуклые облака, красные приливы, световые столбы, волны-убийцы.


Кто вы, рудокопы Росси?

Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.


Компьютер Бронзового века: Расшифровка Фестского диска

Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.


Неопознанные летающие объекты - величайшая научная проблема нашего времени

Автором произведенена попытка проследить и систематизировать историю появления НЛО.