Хаос. Создание новой науки - [80]

Шрифт
Интервал

В конце концов Барнсли понял, что циклы в последовательностях Файгенбаума возникают не на пустом месте. Они относятся к линии, удаленной от комплексной плоскости, где, если приглядеться, существует целое «созвездие» циклов всех порядков. Там всегда наблюдались цикл-два, цикл-три, цикл-четыре, ускользавшие из виду до тех пор, пока они не достигнут линии-экватора с действительными числами. Вернувшись с Корсики в Технологический институт Джорджии, Барнсли написал статью и предложил ее журналу, занимавшемуся вопросами математической физики. Редактор, которым оказался Давид Руэлль, огорчил его: Барнсли, сам того не ведая, повторил открытие пятидесятилетней давности, которое сделал один французский математик. «Руэлль отфутболил мою работу, сопроводив ее припиской: „Майкл, здесь речь идет о множествах Джулиа“», — вспоминал позже Барнсли. Руэлль также посоветовал математику связаться с Мандельбро.


Джон Хаббард, американский математик, обожавший модные рубашки, уже три года преподавал начала математического анализа первокурсникам в Университете Орсе, во Франции. Среди прочих тем в учебный план входило рассмотрение метода Ньютона — классической схемы решения уравнений путем последовательных приближений, или итераций. Хаббарда, впрочем, привычные темы немного утомляли, и однажды он решил, что преподнесет вопрос в такой форме, которая заставит студентов поразмыслить.

Ньютонов метод известен давно. Он не отличался новизной даже тогда, когда Ньютон его «изобрел». Древние греки применяли один из вариантов этого метода для извлечения квадратных корней. Решение начинается с догадки, с начального числа, которое приводит к более точному результату, и процесс итерации устремляется к ответу, подобно тому как динамическая система стремится обрести устойчивое состояние. Процесс идет достаточно быстро, и количество точных цифр после запятой, как правило, удваивается с каждым шагом. Конечно, сейчас квадратные корни вычисляют более аналитическими методами, как и все корни квадратных уравнений — тех, в которых неизвестное x возводится не более чем во вторую степень. Но Ньютонов метод является действенным и для многочленов с высокими степенями, которые не могут быть разрешены аналитически. Он прекрасно подходит для множества компьютерных алгоритмов — ведь итерационные процедуры, как никакие другие, подходят для выполнения на вычислительной машине. Одним маленьким недостатком данного метода можно считать то, что уравнения обычно имеют более одного корня, особенно если среди этих корней есть комплексные решения. Какое именно решение будет найдено с помощью метода итераций, зависит от первоначальной догадки. На практике для студентов не составляет труда преодолеть начальный этап. Обычно имеется отправной пункт, и если сделанное предположение приводит к неверному решению, надо просто начинать с другой точки.

Вы спросите, каким маршрутом метод Ньютона приводит к корням квадратного уравнения на комплексной плоскости? Рассуждая геометрически, ответим, что метод позволяет отыскать тот из двух корней, который ближе к первоначальной догадке. Именно это Хаббард и объяснил своим студентам, когда однажды ему задали такой вопрос. «Уравнения, скажем, третьей степени решаются сложнее, — заметил преподаватель. — Я подумаю над этой проблемой, и мы займемся ею через неделю».

Он полагал, что наибольшую трудность для студентов будет представлять итерационный процесс, но никак не выдвижение начальной догадки. Но чем больше Хаббард размышлял на эту тему, тем менее определенным казалось то, что следует считать разумной догадкой или к чему на самом деле приводит метод Ньютона. Очевидным геометрическим решением было бы разделение плоскости на три равных сектора, похожих на куски пирога, в каждом из которых находилось бы по одному корню. Однако, как обнаружил Хаббард, идея не срабатывала: около границ секторов творились весьма странные вещи. Кроме того, выяснилось, что он далеко не первый специалист, споткнувшийся на этом чрезвычайно сложном вопросе. Так, Артур Кейли в 1879 г. попытался перейти от уравнений второй степени, которые казались вполне понятными, к пугающе сложным уравнениям третьей степени. Тем не менее Хаббард столетие спустя имел в своем распоряжении то, чего недоставало Кейли.

Хаббард относился к числу тех математиков, которые, уважая точность, презирали всяческие догадки, аппроксимации и эмпирику, основанную скорее на интуиции, чем на доказательстве. Даже спустя двадцать лет после появления в литературе упоминания об аттракторе Лоренца он продолжал настаивать на том, что фактически никто не знал, дали начало аттрактору уравнения Лоренца или нет. Это представлялось ему лишь недоказанным предположением, а уже знакомая нам двойная спираль, по его утверждению, была не доказательством, а простой очевидностью, тем, что изображают компьютеры.

Но сейчас, отринув сомнения, Хаббард все-таки обратился к компьютеру, чтобы выполнить то, что общепринятые методы обошли стороной. Компьютер не доказал бы ничего, но, по крайней мере, он мог бы кое-что прояснить, чтобы математик понял, что именно ему предстоит доказать. Итак, Хаббард начал экспериментировать, рассматривая Ньютонов метод не как средство решения задач, а как саму задачу. Он взял в качестве примера простое кубическое уравнение


Еще от автора Джеймс Глик
Путешествия во времени. История

Джеймс Глик, американский журналист и автор научно-популярных книг, исследует идею путешествий во времени и связанные с ней научные концепции и парадоксы. Он рассказывает, как она возникла и как развивалась — в науке и культуре — и как менялось само восприятие времени. Он показывает, что эта идея прочно вошла в современную культуру и присутствует и в современной физике, и в художественной литературе, и в искусстве. Книга будет интересна всем путешественникам во времени.На русском языке публикуется впервые.


Гений. Жизнь и наука Ричарда Фейнмана

Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.


Рекомендуем почитать
«Боевая стрельба из пистолета. Израильский стиль»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фантастическая картотека

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


От Библии ни на шаг!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электрошокеры - осторожно, злая собака!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Беседы о сельском хозяйстве

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Третья мировая война окончена

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.