Хаос. Создание новой науки - [10]

Шрифт
Интервал

В динамике жидкостей все сводится к нелинейному дифференциальному уравнению Навье-Стокса, удивительно емкому и определяющему связь между скоростью, давлением, плотностью и вязкостью жидкости. Природу этих связей зачастую невозможно уловить, ибо исследовать поведение нелинейного уравнения все равно что блуждать по лабиринту, стены которого перестраиваются с каждым вашим шагом. Как сказал фон Нейман, «характер уравнения… меняется одновременно во всех релевантных отношениях; меняется как порядок, так и степень. Отсюда могут проистекать большие математические сложности». Другими словами, мир был бы совсем иным и хаос не казался бы столь необходимым, если бы в уравнении Навье-Стокса не таился демон нелинейности.

Особый вид движения жидкости породил три уравнения Лоренца, которые описывают течение газа или жидкости, известное как конвекция. В атмосфере конвекция как бы перемешивает воздух, нагретый при соприкосновении с теплой почвой. Можно заметить, как мерцающие конвекционные волны поднимаются, подобно привидениям, над раскаленным асфальтом или другими поверхностями, излучающими теплоту. Лоренц испытывал искреннюю радость, рассказывая о конвекции горячего кофе в чашке. По его утверждению, это один из бесчисленных гидродинамических процессов в нашей Вселенной, поведение которых нам, вероятно, захочется предугадать. Как, например, вычислить, насколько быстро остывает чашка кофе? Если напиток не слишком горячий, теплота рассеется без всякого гидродинамического движения, и жидкость перейдет в стабильное состояние. Однако если кофе горячий, конвекция повлечет перемещение жидкости с большей температурой со дна чашки на поверхность, где температура ниже. Этот процесс наблюдается особенно отчетливо, если в чашку с кофе капнуть немного сливок — тогда видишь, сколь сложно кружение жидкости. Впрочем, будущее состояние подобной системы очевидно: движение неизбежно прекратится, поскольку теплота рассеется, а перемещение частиц жидкости будет замедлено трением. Как поясняет Лоренц, «у нас могут быть трудности с определением температуры кофе через минуту, но предсказать ее значение через час нам уже гораздо легче». Формулы движения, определяющие изменение температуры кофе в чашке, должны отражать будущее состояние этой гидродинамической системы. Они должны учитывать эффект рассеивания, при котором температура жидкости стремится к комнатной, а ее скорость — к нулю.

Отталкиваясь от совокупности уравнений, описывающих конвекцию, Лоренц как бы разобрал их на части, выбросив все, что могло показаться несущественным, и таким образом значительно упростил систему. От первоначальной модели не осталось почти ничего, кроме факта нелинейности. В результате уравнения, на взгляд физика, приобрели довольно простой вид. Взглянув на них — а это делал не один ученый на протяжении многих лет, — можно было с уверенностью сказать: «Я смог бы их решить».

Лоренц придерживался иного мнения: «Многие, увидев такие уравнения и заметив в них нелинейные элементы, приходят к выводу, что при решении эти элементы несложно обойти. Но это заблуждение».

Рассмотрим простейший пример конвекции. Для этого представим некоторый замкнутый объем жидкости в сосуде с ровным дном, который можно нагревать, и с гладкой поверхностью, подвергающейся в ходе опыта охлаждению. Разница температур между горячим дном и прохладной поверхностью порождает токи жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря тепловой проводимости, как в металлическом бруске, не преодолевая естественное стремление жидкости находиться в покое. К тому же такая система является устойчивой: случайные движения, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно замирают, и жидкость возвращается в состояние покоя.

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкости она расширяется снизу, становится менее плотной, что, в свою очередь, влечет уменьшение ее массы, достаточное, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический завиток, в котором горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной.


>Рис. 1.2. Движение жидкости. Когда жидкость нагревают снизу, то в ней обычно образуются цилиндрические завитки (слева). Поднимаясь по одной стенке сосуда и спускаясь затем по противоположной, жидкость теряет теплоту — наблюдается конвекция. В случае продолжения этого процесса возникает нестабильность, влекущая за собой колебания в завитках жидкости, идущие в двух направлениях по всей длине цилиндров. При повышении температуры поток становится бурным и беспорядочным.


Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, — кругообразное перемещение нагретой жидкости, показанное на рис. 1.2. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача; и оба физических процесса взаимодействовали. Подобно любой циркулирующей частице горячей жидкости, жидкое вещество в нашем опыте, взаимодействуя с менее нагретой субстанцией, утрачивает теплоту. Однако, если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию за один цикл перемещений «дно —> поверхность —> дно», и в этом случае в ней могут образоваться завихрения.


Еще от автора Джеймс Глик
Путешествия во времени. История

Джеймс Глик, американский журналист и автор научно-популярных книг, исследует идею путешествий во времени и связанные с ней научные концепции и парадоксы. Он рассказывает, как она возникла и как развивалась — в науке и культуре — и как менялось само восприятие времени. Он показывает, что эта идея прочно вошла в современную культуру и присутствует и в современной физике, и в художественной литературе, и в искусстве. Книга будет интересна всем путешественникам во времени.На русском языке публикуется впервые.


Гений. Жизнь и наука Ричарда Фейнмана

Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.


Рекомендуем почитать
Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Черное море

В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.