Голая статистика. Самая интересная книга о самой скучной науке - [64]
Правда, согласно теории вероятностей, в среднем я окажусь неправ в 1 случае из 100.
Анализ такого рода целиком следует из центральной предельной теоремы, которая, с точки зрения статистики, обладает такой же мощью и элегантностью, как действия Леброна Джеймса на баскетбольной площадке. Согласно центральной предельной теореме, средние значения выборок для любой совокупности будут распределены относительно ее среднего значения примерно по нормальному закону. Ниже я постараюсь разъяснить это положение.
1. Допустим, у нас есть некая совокупность, например все зарегистрированные участники марафона, и нас интересует вес каждого бегуна. Любая выборка участников марафона (например шестидесят бегунов, перевозимых каждым автобусом) будет характеризоваться средним значением их веса.
2. Если делать повторные выборки из всего состава зарегистрированных участников марафона, например формировать случайным образом группы из шестидесяти бегунов, то каждая из этих выборок будет характеризоваться собственным средним значением веса. Это и будут средние значения выборок.
3. Большинство этих средних значений будут очень близки к среднему значению веса для данной совокупности. Какие-то из них окажутся чуть больше, какие-то – чуть меньше. По чистой случайности лишь очень немногие из них будут существенно превышать или быть ниже среднего значения веса для данной совокупности.
Прислушайтесь к этой музыке, поскольку именно сейчас все звуки сливаются в мощное крещендо…
4. Центральная предельная теорема гласит, что эти средние значения выборок будут распределены относительно среднего значения совокупности примерно по нормальному закону. Нормальное распределение, как вы, наверное, помните из главы 2, представляет собой распределение колоколообразной формы (например, величины веса взрослых мужчин), в котором 68 % наблюдений находятся на расстоянии одного среднеквадратического отклонения от среднего значения, 95 % наблюдений – на расстоянии двух среднеквадратических отклонений и т. д.
5. Все эти утверждения будут истинными, как бы ни выглядело распределение исходной совокупности. Чтобы средние значения выборок были распределены по нормальному закону, вовсе не обязательно, чтобы совокупность, из которой получены эти выборки, имела нормальное распределение.
Рассмотрим реальные данные, например распределение семейного дохода в Соединенных Штатах. Семейный доход в США не распределен по нормальному закону, а, как правило, скошен вправо. В любом данном году никакая из семей не может заработать меньше 0 долларов, поэтому у данного распределения должна быть нижняя граница. Между тем, годовые доходы у какой-то небольшой группы семей могут быть очень велики – сотни миллионов, а в отдельных случаях даже миллиарды долларов. В результате можно ожидать, что распределение семейного дохода в стране будет характеризоваться длинным «хвостом» справа, нечто наподобие этого:
Медиана семейного дохода в Соединенных Штатах составляет примерно 51 900 долларов; средний семейный доход – 70 900 долларов{57}. (Люди вроде Билла Гейтса сдвигают средний семейный доход вправо; вспомните последствия появления Билла Гейтса в баре, о которых рассказывалось в главе 2.) Теперь допустим, что мы берем случайную выборку из 1000 американских семей и собираем данные об их годовом семейном доходе. Что можно сказать об этой выборке, основываясь на приведенной выше информации и центральной предельной теореме?
Оказывается, довольно много. Прежде всего, можно подтвердить наше предположение о том, что среднее значение любой выборки будет равняться среднему значению совокупности, из которой такая выборка сформирована. Сущность репрезентативной выборки заключается в том, что она похожа на совокупность, из которой сформирована. Любая надлежащим образом созданная выборка не будет в среднем отличаться от Америки в целом. В такую выборку войдут и менеджеры хеджевых фондов, и бездомные, и полицейские, и все прочие основные группы населения, причем все они будут включены в выборку приблизительно в той пропорции, в какой представлены в соответствующей совокупности. Следовательно, можно ожидать, что средний семейный доход в репрезентативной выборке из 1000 американских семей приблизительно составит 70 900 долларов. Будет ли он в точности равен 70 900 долларам? Нет. Но существенно отличаться от этой суммы не будет.
Если мы возьмем несколько выборок из 1000 американских семей, то предположительно их средние значения будут гуппироваться вокруг среднего значения данной совокупности, то есть 70 900 долларов. Можно ожидать, что некоторые из средних значений будут несколько выше этой суммы, а другие – несколько ниже. Может ли среди этих выборок оказаться такая, у которой средний семейный доход составит 427 000 долларов? Разумеется да, однако это очень и очень маловероятно. (Не забывайте, что мы используем правильную методологию формирования выборок, иными словами, не проводим опрос на парковке возле Greenwich Country Club.) Столь же маловероятно, что средний семейный доход в надлежащим образом сформированной выборке из 1000 американских семей составит 8000 долларов.
Это книга о деньгах — о том, как бумажки, лежащие в вашем кошельке, приобрели большую ценность, и как соглашение, обусловившее обмен этих, казалось бы, бесполезных бумажек на реальные товары, стало фундаментальной концепцией современной экономики.
Книга ученого, преподавателя и журналиста Чарлза Уилэна посвящена тому, что окружает нас всегда и повсюду, — экономике. Но Уилэн старается говорить с читателем об этом трудном и «унылом» предмете на понятном языке — без туманных определений, сложных графиков и запутанных уравнений, «разоблачая» таким образом экономику, используя многочисленные примеры из нашей повседневной жизни, автор лишает основные экономические понятия их таинственности и дает ответы на многие вопросы.Книга будет полезна руководителям предприятий, менеджерам, преподавателям, студентам высших учебных заведений и всем интересующимся экономическими проблемами.
Блестящий придворный и знаток людей Ларошфуко говорил в свое время: «Свет чаще награждает видимость достоинств, нежели сами достоинства». Но как же действовать подлинно талантливому человеку, которого не замечают на фоне более уверенных соперников? Джек Нэшер, профессор менеджмента и всемирно известный эксперт в области деловых коммуникаций, призывает освоить стратегии общения, свойственные профессионалу, который впечатляет своей компетентностью и привык греться в лучах славы. Читателю предлагается «пересоздать» себя: усовершенствовать внешний облик, подобрать уместный гардероб, грамотно организовать рабочее пространство, заучить поведение, характерное для лидеров, и бесстрашно выступать с самопрезентацией перед коллегами и партнерами.
Эта книга – продолжение первой части, вышедшей в 2015 г. Во второй части анализируются 100 дел ФАС России против малого и среднего бизнеса за 2016—2018 гг. Несмотря на принятие 3.07.2016 закона об «иммунитетах» для малого бизнеса от антимонопольного контроля, подходы ФАС изменились незначительно. По основным объектом преследования остаются н самые крупные игроки на рынке. В книге предлагается реформа антимонопольного регулирования, предусматривающая полное прекращение преследования МСП.
Нейробиолог Шрини Пиллэй, опираясь на последние исследования мозга, примеры из спорта и бизнеса и истории из своей психологической практики, бросает вызов традиционному подходу к продуктивности. Вместо внимания и сосредоточенности он предлагает специально «расфокусироваться», чтобы стимулировать креативность, развить память, увеличить продуктивность и двигаться к целям. На русском языке публикуется впервые.
Сразу после выхода в свет эта книга заняла первые места на Amazon среди книг по маркетингу и клиентскому сервису. Формирование источника регулярной выручки для компании – важная задача каждого предпринимателя. Благодаря разнообразию разновидностей бизнес-моделей на основе подписки для каждой отрасли можно найти подходящий вариант. Подписчики в любом случае намного ценнее для компании, чем обычные покупатели. Эта книга для всех, кто хочет построить бизнес-модель, приносящую регулярную прибыль. На русском языке публикуется впервые.
В бизнесе да и в жизни уже не так важно, что именно вы делаете. Гораздо важнее то, как вы это делаете. Дов Сайдман, основатель и CEO компании LRN, на страницах своей книги убедительно доказывает: моральные «факторы», прежде считавшиеся «факультативными», определяют сегодня ваш успех. Только ориентируясь на нравственные ценности, выстраивая отношения на основании доверия и заботясь о собственной репутации, вы сможете обойти конкурентов и преуспеть в бизнесе и в жизни. Эта книга будет полезна владельцам компаний, руководителям и менеджерам, которые заботятся не только о прибыли, но и о том, какое наследство они оставят своим детям.
Инновации являются важнейшим фактором роста. Сегодня, более чем когда-либо, компании должны внедрять инновации, чтобы выжить. Но успешные инновации – это очень непростая задача. Авторы – партнеры всемирно известной консалтинговой компании Simon-Kucher & Partners Strategy & Marketing Consultants знают о чем говорят. Георг Таке – ее генеральный директор, а Мадхаван Рамануджам – партнер в Сан-Франциско. Simon-Kucher & Partners – глобальная консалтинговая компания, насчитывающая 900 профессионалов в 33 офисах по всему миру.