Голая статистика. Самая интересная книга о самой скучной науке - [103]
Сильно коррелированные объясняющие переменные (мультиколлинеарность). Если уравнение регрессии включает две объясняющие переменные (или даже больше), сильно коррелированные между собой, то анализ вполне может не выявить истинной зависимости между каждой из этих переменных и исходом, который мы пытаемся объяснить. Приведу соответствующий пример. Допустим, мы хотим измерить влияние противозаконного использования наркотиков на результаты сдачи экзаменов. В частности, мы располагаем данными о том, употребляли ли когда-либо участники нашего исследования кокаин и «баловались» ли когда-либо героином. (Будем исходить из того, что в нашем распоряжении есть и много других управляющих переменных.) Каково влияние употребления кокаина на результаты сдачи экзаменов (при условии неизменности всех остальных факторов, включая употребление героина)? А каково влияние употребления героина на итоги экзаменов (при условии неизменности всех остальных факторов, включая употребление кокаина)?
Вполне возможно, что коэффициенты по употреблению героина и кокаина не смогут ответить на интересующие нас вопросы. Методологическая проблема в данном случае заключается в том, что те, кто «баловался» героином, наверняка употребляли и кокаин. Если поместить в уравнение обе переменные, то число тех, кто употреблял один из этих наркотиков, но не употреблял другой, окажется очень незначительным. Это оставит нам довольно мизерное расхождение в данных, на основании которого мы могли бы вычислить их независимые влияния. Вспомните мысленный эксперимент, который мы провели в предыдущей главе, чтобы объяснить регрессионный анализ. Мы распределили выборку данных по разным комнатам, в которых каждое наблюдение идентично за исключением одной переменной, что позволяло затем вычленить влияние этой переменной, параллельно контролируя другие факторы, потенциально способные сказываться на интересующем нас исходе. В нашей выборке может быть 692 человека, которые употребляли и кокаин, и героин. Но у нас может быть и всего три человека, которые употребляли только кокаин, и два человека, употреблявших только героин. Любой вывод относительно независимого влияния лишь одного или другого наркотика будет основываться на этих крошечных выборках.
Вряд ли нам удастся получить достоверные коэффициенты регрессии по какой-либо из этих двух переменных (кокаин или героин); мы можем также проигнорировать более сильную и важную зависимость между результатами экзаменов и употреблением какого-то одного из этих наркотиков. Когда две объясняющие переменные сильно коррелированны между собой, исследователи обычно используют в уравнении регрессии какую-то одну из них; как вариант, они могут создать некую составную переменную, например «употреблял кокаин или героин». Если же исследователи хотят контролировать в целом социально-экономическое положение учащегося, они могут включить переменные «образование матери» и «образование отца», поскольку это обеспечивает важное указание на уровень образования соответствующей семьи в целом. Однако если цель регрессионного анализа – вычленить влияние либо образования отца, либо образования матери, то включение в уравнение обеих переменных скорее запутает вопрос, чем внесет в него ясность. Корреляция между уровнями образования мужа и жены столь высока, что мы не можем полагаться на то, что регрессионный анализ даст нам коэффициенты, которые позволят надлежащим образом вычленить влияние образования кого-либо из родителей (это так же трудно, как обособить влияние употребления кокаина от влияния употребления героина)[69].
Экстраполяция за границы имеющихся данных. Регрессионный анализ, как и все формы статистического вывода, помогает нам лучше понять окружающий мир. Мы пытаемся выявить закономерности, которые будут общими и для более крупной совокупности. Однако наши результаты будут справедливы лишь для совокупности, подобной выборке, в отношении которой выполнялся анализ. В предыдущей главе я создал уравнение регрессии, позволяющее предсказывать вес, основываясь на ряде независимых переменных. Значение R² в моей окончательной модели равнялось 0,29; это означает, что оно дает возможность объяснить разброс веса для крупной выборки людей, если все они оказались взрослыми.
Итак, что же произойдет, если мы воспользуемся нашим уравнением регрессии для предсказания вероятного веса новорожденного младенца? Давайте проверим. При рождении рост моей дочери составлял 21 дюйм. Допустим, ее возраст в момент рождения равнялся нулю; у нее, конечно же, не было образования и она не занималась спортом. Она относилась к белой расе и была женского пола. Уравнение регрессии, основанное на данных America’s Changing Lives, предсказывает, что ее вес при рождении должен иметь отрицательную величину: ‒19,6 фунта. (В действительности она весила 8,5 фунта.)
Это книга о деньгах — о том, как бумажки, лежащие в вашем кошельке, приобрели большую ценность, и как соглашение, обусловившее обмен этих, казалось бы, бесполезных бумажек на реальные товары, стало фундаментальной концепцией современной экономики.
Книга ученого, преподавателя и журналиста Чарлза Уилэна посвящена тому, что окружает нас всегда и повсюду, — экономике. Но Уилэн старается говорить с читателем об этом трудном и «унылом» предмете на понятном языке — без туманных определений, сложных графиков и запутанных уравнений, «разоблачая» таким образом экономику, используя многочисленные примеры из нашей повседневной жизни, автор лишает основные экономические понятия их таинственности и дает ответы на многие вопросы.Книга будет полезна руководителям предприятий, менеджерам, преподавателям, студентам высших учебных заведений и всем интересующимся экономическими проблемами.
Блестящий придворный и знаток людей Ларошфуко говорил в свое время: «Свет чаще награждает видимость достоинств, нежели сами достоинства». Но как же действовать подлинно талантливому человеку, которого не замечают на фоне более уверенных соперников? Джек Нэшер, профессор менеджмента и всемирно известный эксперт в области деловых коммуникаций, призывает освоить стратегии общения, свойственные профессионалу, который впечатляет своей компетентностью и привык греться в лучах славы. Читателю предлагается «пересоздать» себя: усовершенствовать внешний облик, подобрать уместный гардероб, грамотно организовать рабочее пространство, заучить поведение, характерное для лидеров, и бесстрашно выступать с самопрезентацией перед коллегами и партнерами.
Эта книга – продолжение первой части, вышедшей в 2015 г. Во второй части анализируются 100 дел ФАС России против малого и среднего бизнеса за 2016—2018 гг. Несмотря на принятие 3.07.2016 закона об «иммунитетах» для малого бизнеса от антимонопольного контроля, подходы ФАС изменились незначительно. По основным объектом преследования остаются н самые крупные игроки на рынке. В книге предлагается реформа антимонопольного регулирования, предусматривающая полное прекращение преследования МСП.
Нейробиолог Шрини Пиллэй, опираясь на последние исследования мозга, примеры из спорта и бизнеса и истории из своей психологической практики, бросает вызов традиционному подходу к продуктивности. Вместо внимания и сосредоточенности он предлагает специально «расфокусироваться», чтобы стимулировать креативность, развить память, увеличить продуктивность и двигаться к целям. На русском языке публикуется впервые.
Сразу после выхода в свет эта книга заняла первые места на Amazon среди книг по маркетингу и клиентскому сервису. Формирование источника регулярной выручки для компании – важная задача каждого предпринимателя. Благодаря разнообразию разновидностей бизнес-моделей на основе подписки для каждой отрасли можно найти подходящий вариант. Подписчики в любом случае намного ценнее для компании, чем обычные покупатели. Эта книга для всех, кто хочет построить бизнес-модель, приносящую регулярную прибыль. На русском языке публикуется впервые.
В бизнесе да и в жизни уже не так важно, что именно вы делаете. Гораздо важнее то, как вы это делаете. Дов Сайдман, основатель и CEO компании LRN, на страницах своей книги убедительно доказывает: моральные «факторы», прежде считавшиеся «факультативными», определяют сегодня ваш успех. Только ориентируясь на нравственные ценности, выстраивая отношения на основании доверия и заботясь о собственной репутации, вы сможете обойти конкурентов и преуспеть в бизнесе и в жизни. Эта книга будет полезна владельцам компаний, руководителям и менеджерам, которые заботятся не только о прибыли, но и о том, какое наследство они оставят своим детям.
Инновации являются важнейшим фактором роста. Сегодня, более чем когда-либо, компании должны внедрять инновации, чтобы выжить. Но успешные инновации – это очень непростая задача. Авторы – партнеры всемирно известной консалтинговой компании Simon-Kucher & Partners Strategy & Marketing Consultants знают о чем говорят. Георг Таке – ее генеральный директор, а Мадхаван Рамануджам – партнер в Сан-Франциско. Simon-Kucher & Partners – глобальная консалтинговая компания, насчитывающая 900 профессионалов в 33 офисах по всему миру.