Гиперпространство - [19]
Метрический тензор Римана: новая теорема Пифагора
Риману понадобилось несколько месяцев, чтобы оправиться от последствий нервного срыва. Его доклад, наконец прочитанный в 1854 г., приняли с воодушевлением. В ретроспективе это был, бесспорно, один из наиболее выдающихся публичных докладов в истории математики. По Европе быстро распространилось известие, что Риман решительно сбросил оковы евклидовой геометрии, которой математики подчинялись на протяжении двух тысячелетий. О докладе вскоре узнали во всех центрах образования Европы, вклад Римана в математику приветствовали повсюду в научных кругах. Доклад Римана перевели на несколько языков, он произвел фурор в математике. К евклидовой геометрии раз и навсегда перестали относиться так, как прежде.
Суть выдающегося труда Римана, как и суть многих величайших работ в области физики и математики, уловить довольно просто. Риман начал со знаменитой теоремы Пифагора, одного из важнейших достижений древнегреческих математиков. Эта теорема устанавливает соотношения между длинами сторон прямоугольного треугольника. Согласно ей, сумма квадратов коротких сторон, катетов, равна квадрату длинной стороны, гипотенузы; если а и b — длины катетов, ac — длина гипотенузы, тогда а>2 + Ь>2 = с>2. (Естественно, теорема Пифагора лежит в основе всей архитектуры; все сооружения на планете построены с ее учетом.)
Эту теорему легко сформулировать для трехмерного пространства. Она гласит, что сумма квадратов трех смежных сторон куба равна квадрату его диагонали; или если а, Ь и с — стороны куба, ad — его диагональ, тогда а>2 + b>2 + с>2 = d>2 (рис. 2.1).
Рис. 2.1. Длину диагонали куба дает трехмерный вариант теоремы Пифагора: a>2 + Ь>2 + c>2 = d>2. Простого добавления новых переменных в теорему Пифагора достаточно, чтобы записать формулу для диагонали гиперкуба в N-мерном пространстве. Таким образом, несмотря на сложность визуализации высших измерений, представить N-мерность математически довольно просто.
Теперь так же просто можно сформулировать ту же теорему для N-мерного пространства. Представим себе N-мерный куб. Если а, Ь, с… — длины сторон «гиперкуба», а z — длина его диагонали, тогда а>2 + Ь>2 + с>2 + d>2 +… = z>2. Примечательный момент: хотя наш мозг не в состоянии представить N-мерный куб, формулу для его сторон и диагонали записать несложно. (Это типичная особенность работы с гиперпространством. С математической, точки зрения манипулировать N-мерным пространством не труднее, чем трехмерным пространством. Поразительно, как на простом листе бумаги можно математически описать свойства многомерных объектов, которые не в силах вообразить наш мозг.)
Затем Риман записал эти уравнения для пространств с произвольным количеством измерений. Эти пространства могут быть либо плоскими, либо искривленными. К плоским применяются обычные аксиомы Евклида: кратчайшее расстояние между двумя точками — прямая, параллельные линии никогда не пересекаются, сумма внутренних углов треугольника составляет 180°. Вместе с тем Риман обнаружил, что поверхности могут иметь «положительную кривизну», как поверхность сферы, где параллельные всегда пересекаются и сумма углов треугольника может быть больше 180°. Бывают и поверхности с «отрицательной кривизной»: например, седлообразные или воронкообразные. На этих поверхностях сумма углов треугольника меньше 180°. Если взять линию и точку вне этой линии, то через такую точку можно провести бесконечное множество линий, параллельных данной (рис. 2.2).
Рис. 2.2. Плоскость имеет нулевую кривизну. Согласно евклидовой геометрии сумма углов треугольника равна 180°, параллельные не пересекаются. В неевклидовой геометрии сфера имеет положительную кривизну. Сумма углов треугольника превышает 180°, параллельные линии всегда пересекаются. (К параллельным линиям относятся дуги, центры которых совпадают с центром сферы. Широтные линии в эту категорию не входят.) У седлообразной поверхности отрицательная кривизна. Сумма углов треугольника меньше 180°. Через конкретную точку можно провести бесконечное множество линий, параллельных данной.
Целью Римана было ввести в математику новый элемент, позволяющий описывать все поверхности независимо от их сложности. Как и следовало ожидать, эта цель побудила его обратиться к фарадеевой концепции поля.
Как мы помним, поле Фарадея представляло собой подобие крестьянского, занимающего двумерный участок пространства. Фарадеево поле занимает часть трехмерного пространства; любой точке этого пространства мы присваиваем ряд параметров, описывающих магнитное или электрическое взаимодействие в этой точке. Идея Римана заключалась в том, чтобы присвоить каждой точке пространства ряд параметров, которые описывали бы степень его деформации или кривизны.
К примеру, для обычной двумерной поверхности Риман вводил набор из трех параметров для каждой точки, полностью описывающих искривление этой поверхности. Риман обнаружил, что в четырех пространственных измерениях для описания свойств каждой точки требуется набор из десяти параметров. Каким бы «скомканным» или искривленным ни было пространство, этих десяти параметров для каждой точки оказывалось достаточно, чтобы зашифровать всю информацию о данном пространстве. Обозначим эти десять параметров как
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.
Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие самые смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Мичио Каку, американский физик японского происхождения и один из авторов теории струн. Из книги вы узнаете, что уже в ХXI в., возможно, будут реализованы силовые поля, невидимость, чтение мыслей, связь с внеземными цивилизациями и даже телепортация и межзвездные путешествия.
Прямое мысленное общение с компьютером, телекинез, имплантация новых навыков непосредственно в мозг, видеозапись образов, воспоминаний и снов, телепатия, аватары и суррогаты как помощники человечества, экзоскелеты, управляемые мыслью, и искусственный интеллект. Это все наше недалекое будущее. В ближайшие десятилетия мы научимся форсировать свой интеллект при помощи генной терапии, лекарств и магнитных приборов. Наука в этом направлении развивается стремительно. Изменится характер работы и общения в социальных сетях, процесс обучения и в целом человеческое развитие.
Кому как не ученым-физикам рассуждать о том, что будет представлять собой мир в 2100 году? Как одним усилием воли будут управляться компьютеры, как силой мысли человек сможет двигать предметы, как мы будем подключаться к мировому информационному полю? Возможно ли это? Оказывается, возможно и не такое. Искусственные органы; парящие в воздухе автомобили; невероятная продолжительность жизни и молодости — все эти чудеса не фантастика, а научно обоснованные прогнозы серьезных ученых, интервью с которыми обобщил в своей книге Мичио Каку.Издание подготовлено при поддержке Фонда Дмитрия Зимина «Династия».
Эта книга, конечно же, не развлекательное чтение. Это то, что называется «интеллектуальный бестселлер». Чем, собственно, занимается современная физика? Какова нынешняя модель Вселенной? Как понимать «многомерность» пространства и времени? Что такое параллельные миры? Автор этой книги, Мичио Каку, очень авторитетный ученый-физик. Поэтому в «Параллельных мирах» вы не найдете помпезной «псевдонауки». Мичио Каку — опытный литератор. Он умеет писать просто. И в этой книге вы не найдете сложных математических формул.
Описывая жизнь Альберта Эйнштейна, Митио Каку погружает нас в бурлящую атмосферу первой половины XX в. – две мировые войны, революция в Германии, создание атомной бомбы. Он показывает читателю невидимый обычно за триумфальной стороной открытий и озарений мир ученого – этапы становления, баталии в научном мире, зачастую непростые отношения с близкими. В книге представлен свежий взгляд на новаторскую деятельность Эйнштейна, перевернувшего представления человечества о пространстве и времени. Автор книги, Митио Каку, – всемирно известный физик и популяризатор науки.
Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.