Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? - [5]
Рис. 1
На рисунке 2 показана часть спектра водорода и ртути. Длины волн заключены в интервале между 660 и 190 нм (нанометр – одна миллиардная часть метра). Видимый спектр соответствует диапазону частот 400- 700 нм. Чтобы найти частоты этих линий, нужно разделить скорость света (300000 км/с) на соответствующие длины волн. Результаты будут пропорциональны разности двух энергий. На заре атомной физики ученые стремились рассчитать величины этих энергий, которые зависели от определенных квантовых чисел, по известным разностям энергий. Вскоре стало очевидно, что получить все возможные разности энергий в ходе экспериментов нельзя. В результате были определены различные правила выбора, в которых фигурировали квантовые числа.
Рис. 2
В 1860 году немецкие ученые Кирхгоф и Бунзен показали, что с помощью дискретных спектров можно обнаруживать различные химические элементы – как сегодня можно идентифицировать товар по его штрихкоду. Для этого достаточно составить подробный каталог частот, соответствующих каждому элементу. Кроме того, чтобы понять, откуда берутся лучи спектра, потребовалось определить отношения между наблюдаемыми частотами не только в видимой части спектра, но и в инфракрасной и ультрафиолетовой. Число лучей в подобном «штрихкоде» может быть огромным: так, число линий атомного спектра железа достигает нескольких тысяч.
Простейшим атомным спектром является спектр атома водорода – он содержит всего четыре луча в видимой части. Длины волн этих лучей были измерены в 1884 году шведским ученым Андерсом Ангстремом. В следующем году в исследовании принял участие Иоганн Бальмер, швейцарский учитель математики, который преподавал в технических школах и женских учебных заведениях Базеля. Спустя более 20 лет после защиты докторской диссертации Бальмер получил хабилитацию, а с ней – право преподавать в университете. Ученый не раз говорил друзьям и коллегам, что если ему дадут любой ряд чисел, то он сможет найти формулу, связывающую их. Один из коллег предложил ему недавно полученные результаты измерений спектра водорода, и Бальмер справился с задачей. Его открытие вызвало еще больший интерес, когда другие ученые обобщили результат Бальмера и смогли полностью описать атомный спектр водорода. Спектральные «штрихкоды» постепенно начали упорядочиваться. Частоты спектральных линий пропорциональны обратным квадратам двух целых чисел. Описывающее их математическое выражение, известное как формула Ридберга, выглядит так:
где m и n – два целых числа (m < n), R – постоянная Ридберга.
Однако формула Бальмера не имела под собой никакой научной основы. Теперь расскажем, какую роль в зарождении квантовой физики сыграли целые числа.
Каким образом Бальмер получил свою магическую формулу? Отправной точкой послужили четыре длины волны, выраженные в нанометрах:
656,21: 486,07 : 434,01: 410,12.
Сначала разделим все числа на наименьшее из них. Не будем записывать все десятичные знаки после запятой и приведем округленные результаты деления:
1,6:1,185:1,058:1.
Двоеточия означают, что речь идет об отношениях чисел. Теперь нужно как-то записать эти числа в виде рациональных дробей, то есть как частные двух целых. Предприняв несколько попыток, вы увидите, что если мы умножим все четыре числа на 9/8, то получим:
9/5:4/3:25/21:9/8.
Было бы удобнее, если бы знаменатели располагались в порядке возрастания. Для этого умножим второе и четвертое число на 4/4, то есть на 1. Новый ряд чисел будет выглядеть так:
9/5; 16/12; 25/21; 36/32.
Видите ли вы какую-либо закономерность, связывающую эти числа? От Бальмера не ускользнул тот факт, что их числители являются квадратами последовательных целых чисел (3,4,5,6), а знаменатели равны числителям, уменьшенным на 4, что можно записать как 2 в квадрате. Подведем итог: если каждой линии спектра поставить в соответствие целое число n, то длины волн будут пропорциональны дроби n²/(n² -2² ), где n принимает значения 3, 4 и так далее. Читатель может убедиться, что коэффициент пропорциональности равен 364,56 нм. Это выражение представляет собой всего лишь результат игры с числами, однако, как предположил Бальмер, его можно записать для других линий спектра, заменив 2² квадратами следующих целых чисел. Если рассмотреть частоты, которые, как известно, обратно пропорциональны длинам волн, то, с точностью до постоянного коэффициента, они будут описываться членами ряда 1/2² -1/n² .
С зарождением квантовой физики связана одна техническая задача. Во второй половине XIX века ученые и инженеры заинтересовались изучением абсолютно черного тела – идеального объекта, поглощающего все падающее на него излучение. На практике абсолютно черное тело представляет собой полость, внутреннее излучение которой можно наблюдать сквозь небольшое отверстие. Интерес к этому идеальному объекту возник, когда Густав Кирхгоф показал, что интенсивность излучения (точнее, энергия излучения на единицу объема и на единицу частоты внутри полости) не зависит от природы стенок тела, а определяется исключительно частотой излучения и температурой полости. Изучение абсолютно черного тела позволяло определить закономерности, описывающие излучение светящихся тел.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Знаменитый во всем мире популяризатор науки, ученый, инженер и популярный телеведущий канала Discovery, Билл Най совершил невероятное — привил любовь к физике всей Америке. На забавных примерах из собственной биографии, увлекательно и с невероятным чувством юмора он рассказывает о том, как наука может стать частью повседневной жизни, учит ориентироваться в море информации, правильно ее фильтровать и грамотно снимать «лапшу с ушей». Читатель узнает о планах по освоению Марса, проектировании «Боинга», о том, как выжить в автокатастрофе, о беспилотных автомобилях, гениальных изобретениях, тайнах логарифмической линейки и о других спорных, интересных или неразрешимых явлениях науки. «Человек-физика» Билл Най научит по-новому мыслить и по-новому смотреть на мир.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
«Игра престолов» — один из самых популярных и культовых сериалов последних лет. От него невозможно оторваться, но иногда возникают вопросы: «Неужели так может быть на самом деле?» или «Как они это вообще сделали?». Что представляют собой драконы с точки зрения современной физики и биологии? Как сделать меч из валирийской стали? Почему дикий огонь столь страшен в качестве оружия? Об этом захотят узнать не только фанаты сериала, но и простые зрители.
В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.