Геологи изучают планеты - [4]

Шрифт
Интервал

Камера ФМС-80 представляет собой блок из четырех фотоаппаратов, работавших одновременно. Благодаря набору пленок и светофильтров каждый аппарат мог получать изображение в определенной зоне спектра. Таким способом весь фотографический диапазон был, как бы разрезан на три части. Фотоснимки с минимальными длинами волн (500-600 нм) оказались наиболее интересными для изучения мелководий шельфа, так как на них проступает рельеф дна на небольших глубинах, видны так называемые подводные ландшафты. Снимки средней зоны (600-700 нм) явились основным материалом для расшифровки геологического строения во многих горных районах. В ряде местностей особенно эффективным оказалось использование снимков с длинами волн 700-850 нм, которые захватывают ближний инфракрасный диапазон, невидимый человеческому глазу. На них резко выделяются местности с повышенной увлажненностью, видна вся система даже самых незначительных водотоков. Такие снимки — ценный материал для гидрогеологов, мелиораторов, специалистов в области инженерной геологии. Они оказывают большую помощь при расшифровке глубинного строения равнинных территорий, где особенности строения горных пород на глубине получают отражение в ландшафте. Четвертый аппарат в этой системе был заряжен цветной диапозитивной пленкой с тем, чтобы получать изображение поверхности Земли в цветах, близких к естественным.

Большое место в работе экипажей орбитальных станций уделяется фотосъемке с помощью ручных камер. Такая съемка выполняется через иллюминаторы станции без предварительного ориентирования или в режиме гравитационной стабилизации, когда станция ориентирована своей осью в сторону Земли, сохраняя такое положение длительное время. Снимки при этом получаются преимущественно перспективные. Сами космонавты в соответствии с программой исследований выбирают сюжеты съемки и определяют наиболее благоприятные условия фотографирования. При длительной работе экипажа накапливается ценный материал по условиям космической фотосъемки геологических и других природных объектов. Особенно большая работа по съемке ручными камерами была выполнена космонавтами на станции "Салют-6". В результате съемок Ю. В. Романенко, Г. М. Гречко, В. В. Коваленка, A. С. Иванченкова, В. А. Ляхова, В. В. Рюмина, В. П. Савиных получены тысячи космических фотоснимков, запечатлевших разломы и кольцевые структуры, вулканы, прихотливо изогнутые в сложные складки пласты горных пород в Загросе и Высоком Атласе и следы отступания Каспия. Большое впечатление оставляет снимок газово-пеплового шлейфа во время извержения вулкана Горелый на Камчатке. Снимки представляют особый интерес для целей сравнительно-планетологического анализа. Чтобы убедиться в этом, достаточно положить рядом снимки вулкана Олимп на Марсе и потухшего вулкана Эми-Куси в нагорье Тибести, в центре Сахары. Эти вулканические сооружения оказались удивительно похожими.

Снимками детального уровня являются многозональные фотографии, полученные космонавтами В. Ф. Быковским и B. В. Аксеновым с пилотируемого космического корабля "Союз-22". Они были выполнены с помощью камеры МКФ-6 в процессе эксперимента "Радуга" в результате международного сотрудничества ученых СССР и ГДР в рамках программы "Интеркосмос". Съемка производилась в шести зонах спектра. На снимках, полученных при благоприятных условиях, видны детали размером порядка 15 м на местности. Эти материалы пригодны для обработки с помощью оптико-электронных средств и ЭВМ как в аналоговой, так и в цифровой формах.

Еще более детальные снимки получают с помощью самолетов. При высоте полета более 10 км аэрофотосъемка считается высотной. Ее масштаб варьирует в пределах 1:200000-1:100000. С помощью низколетящих самолетов и вертолетов можно получить снимки практически любой необходимой детальности, на которых будут видны даже одиночные деревья и крупные камни. Наряду с обычными аэрофотоснимками все более широкое применение получают радиолокационные изображения и снимки в инфракрасном тепловом диапазоне, полученные с помощью тепловизоров. Инфракрасная съемка основана на изучении тепловых контрастов и пригодна для распознавания геологических объектов. Особенно эффективно ее использование при изучении районов с активной вулканической деятельностью, при гидрогеологических и инженерно-геологических исследованиях, при поисках грунтовых и подземных вод. Радиолокационная съемка может быть осуществлена в любое время суток и при любой погоде, так как облачность, туман и освещенность не влияют на прохождение радиоволн.

В целом геологи сейчас обеспечены большим набором разномасштабных изображений земной поверхности, полученных к тому же в различных зонах спектра. Специалист в области геологического дешифрирования уверенно выделяет на них разломы, кольцевые структуры, трещины, слои горных пород, вулканы и лавовые покровы — все многообразие различных геологических объектов. Накопленный опыт используется для расшифровки снимков других планет, хотя на их фотопортретах выявляется немало загадочного, над чем ученым приходится задумываться.

Как обеспечены снимками другие небесные тела, чем отличаются их фотопортреты от земных? Начнем с Луны, так как благодаря близости к Земле она была давно уже доступна для фотографирования с помощью телескопов. Со времен Галилео Галилея многочисленные исследователи наблюдали, а в дальнейшем и фотографировали видимое с Земли полушарие Луны. Из лучших фотографий, полученных наиболее совершенными инструментами ведущих обсерваторий, собраны фотографические атласы. Для видимого полушария были составлены различные карты, вплоть до масштаба 1:1000000, а также фотокарты.


Рекомендуем почитать
Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.