Геологи изучают планеты - [34]

Шрифт
Интервал

Если предположить, что процесс кристаллизации вещества мантии Марса также сопровождался выделением летучих компонентов, то в атмосфере Марса, как и на Земле, воды когда-то могло быть значительно больше. Возможно, что вода улетучилась из-за низкого давления. В то же время существование отрицательных температур позволяет и по-другому подойти к этому вопросу. Выделяющаяся из недр Марса вода у поверхности должна замерзать. Образующийся слой мерзлых пород со льдом мог служить своего рода экраном, который задерживал поступающую из недр воду, и таким образом с течением времени могла формироваться мерзлотная зона Марса. Этим можно объяснить и высокое содержание углекислого газа в атмосфере Марса. Поскольку для перехода углекислого газа в твердое состояние требуется более низкая температура, чем для воды, то, поднимаясь снизу, он мог проникать через мерзлые породы; это привело к его избытку в атмосфере.

Представление о строении криолитосферы Марса основывается так же, как и для земной аналогичной зоны, на главных факторах — средней вековой температуре верхнего слоя пород, теплопроводности их в мерзлом состоянии и тепловом потоке недр. Вычисленные ранее теоретические значения среднегодовых температур Марса, дополненные прямыми измерениями, показали, что они изменяются в зависимости от широты от -29° С на экваторе до -93° С на северном полюсе и до -88° С на южном.

Разрезы верхних горизонтов криолитосферы Марса по меридиану (1-3). По Р. О. Кузьмину (1980 г.)


Величина теплового потока была рассчитана на основании анализа содержания радиоактивных элементов в поверхностных породах Марса. На основании этих данных Р. О. Кузьмин рассчитал мощность криолитосферы Марса, которая в несколько раз превышает максимальную мощность ее на Земле. Наибольшая мощность мерзлоты установлена на полюсах — 4,2 км, наименьшая — 1,2 км — в экваториальной зоне.

Так как значения отрицательных температур на поверхности и в верхней части коры Марса позволяют существовать углекислоте в жидком, твердом и газообразном состоянии, а также твердому продукту взаимодействия воды и углекислоты — газгидрату, отсюда следует, что строение криолитосферы и ее состав в зависимости от широты могут изменяться как по глубине, так и по простиранию. Р. О. Кузьмин считает, что в экваториальной области Марса и в средних широтах мерзлотная зона с поверхности состоит из водного льда, глубже сменяющегося газгидратом, жидкой углекислотой и снова газгидратом. В полярных районах в верхней части зона может состоять из сухого льда или твердой углекислоты, ниже сменяющейся жидкой углекислотой и газгидратом. Таким образом, криогенная оболочка Марса развита по всей его поверхности и имеет трехслойную структуру.

В пределах широтного пояса от 50° с. ш. до 50° ю. ш. наблюдается испарение льда, содержащегося в поверхностных породах вследствие дефицита насыщения атмосферы водяным паром. Поэтому здесь с поверхности должен находиться слой морозных, т. е. холодных сухих пород, а мерзлые породы, содержащие лед, должны располагаться несколько ниже. Для определения положения кровли мерзлых пород Р. О. Кузьмин использовал строение выбросов некоторых свежих метеоритных кратеров, напоминающих грязевые потоки на Земле. Появление таких выбросов объясняется тем, что при метеоритных взрывах происходит плавление ледосодержащих пород и последующее растекание разжиженного материала выбросов при падении его на поверхность. Поэтому присущие кратерам потоковидные выбросы могут служить показателем вскрытия мерзлых пород, а зная глубину кратера, можно говорить и о глубине залегания мерзлых пород. На основании этого предполагается, что в экваториальной зоне граница между морозными и мерзлыми породами находится на глубине около 350 м от поверхности; в направлении к полюсам она постепенно поднимается, и на широте 70-80° непосредственно на поверхности существует уже лед. Согласно расчетам Р. О. Кузьмина, в криолитосфере Марса содержится 5*10>22 г воды, что почти в 100 раз превышает ее количество в подземных льдах Земли.

О существовании мерзлоты на Марсе свидетельствуют и различные формы рельефа, которые на Земле характерны для зоны многолетней мерзлоты. К ним относятся морозобойные трещины, солифлюкционные потоки, термокарстовые воронки, оползни и оплывины.

На детальных снимках Марса на его северных океанических равнинах, и в частности на равнине Утопия, наблюдается причудливая сеть трещин, местами образующая полигоны. Они очень напоминают земные трещины, возникающие в результате морозобойного растрескивания поверхности в тундре. Однако марсианские трещины по своим размерам в десятки раз превышают земные. Возможно, что громадная мощность мерзлоты в этих районах (2-3 км) обусловливает и развитие более крупных, чем на Земле, форм. Однако не исключено, что процесс морозобойного растрескивания использует уже существующие тектонические трещины, т. е. является вторичным, только осложняющим главный процесс. По некоторому сходству предполагается одинаковое происхождение марсианских и земных трещин, но утверждать это определенно нельзя, так как часто при внешнем сходстве форм причины образования их могут быть различными. Тем более что породы, подвергающиеся растрескиванию, на Марсе отличны от земных. Если на Земле это почти всегда рыхлые отложения — суглинки, глины, пески, то на Марсе это более плотные породы: вулканические лавы или реголит, перекрытые маломощным чехлом золовой пыли.


Рекомендуем почитать
99 секретов астрономии

В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.