Фрегат капитана Единицы - [20]

Шрифт
Интервал

на противоположную ей сторону ВС. А провести надо так, чтобы при этом получились прямые углы. Такую прямую называют перпендикуляром. Вот перпендикуляр и есть кратчайшее расстояние от точки А до прямой ВС.

Я немного обиделся на капитана: зачем он выбрал себе самую лучшую улицу? Но капитан сказал, что и две другие ничуть не хуже и что у каждой из них есть свои особенности.

Та, по которой шёл я — у неё ещё такое красивое название Биссектриса, — делит угол треугольника при вершине А точно пополам.

— А какие особенности у моей улицы? — спросил Пи.

— Эта улица привела тебя на самую середину бульвара, и называется она Медианой.

Вот какие замечательные улицы выходят из гавани А! Но оказалось, что такие же улицы выходят и из гавани В, и из гавани С. Ведь у треугольника три вершины, — значит, три высоты, три биссектрисы и три медианы.

Я попросил капитана вернуться в гавань А по Биссектрисе. Он не возражал, и вскоре мы дошли до перекрёстка, где сходились две другие Биссектрисы.

— Как? Все три Биссектрисы встретились в одном месте? — недоумевал я. — Наверное, это случайно!

Представьте себе, что это было вовсе не случайно. В треугольнике все три Биссектрисы всегда пересекаются в одной точке.

— О, это замечательная точка! — добавил капитан.

Мы поинтересовались, чем же она замечательна.

— А тем, — ответил капитан, — что в любом треугольнике расстояния от этой точки до каждой из трёх сторон треугольника все совершенно одинаковы.

Тогда Пи сказал, что Медиана, конечно, не хуже Биссектрисы и что все три Медианы, наверное, тоже пересекаются в одной точке. Мы не поленились проверить его предположение и убедились, что три Медианы в самом деле пересекаются в одном месте.

Но самое интересное было впереди. В точке пересечения трёх Медиан мы обнаружили ввинченное в землю толстое кольцо — то самое кольцо, за которое вертолёт поднимал остров в воздух. Отчего же кольцо ввинчено именно здесь? Да оттого, что на пересечении Медиан находится центр тяжести треугольника. Будь кольцо где-нибудь в другом месте, остров неминуемо перевернулся бы или наклонился. Но он висел ровнёхонько, стало быть, центр тяжести был у него найден правильно.

На треугольном острове много других интересных улиц, только мы не успели их осмотреть. Прибежал штурман Игрек и напомнил, что по расписанию Фрегату пора отчаливать. Но нам всё-таки удалось уговорить капитана пройтись напоследок по Высоте. И тогда мы увидели, что все три Высоты треугольника тоже пересекаются в одной точке.

Когда Фрегат отчалил, мы с Пи по памяти стали чертить план острова. Сперва вычертили треугольник. Провели из вершины А высоту. Затем стали проводить биссектрису: разделили угол А пополам и… Странное дело! Биссектриса совпала с высотой. Потом разделили сторону ВС пополам, провели медиану. И можете себе представить, она тоже совпала и с высотой, и с биссектрисой. Та же история повторилась, когда мы проводили высоты, медианы и биссектрисы из вершин В и С. Таким образом, вместо девяти линий у нас получилось только три, и ясное дело, все они пересеклись в одной общей точке.

Сперва мы никак не могли понять, отчего это произошло. Но потом всё-таки догадались. Поразмыслите над этим и вы.

ТАК УЖ УСЛОВИЛИСЬ!

21 нуляля

Сегодня у меня выдался свободный часок. Я лежал в шезлонге, грелся на солнышке и смотрел на облака. Люблю смотреть на облака: они всё время куда-то плывут, всё время меняются. Глядя на них, хорошо думать.

Вот плывёт облако, похожее на слона. Я смотрю на него и думаю: почему слон называется слоном? Почему не мухой? И почему слоном называют ещё шахматную фигуру? И почему шахматный слон ходит только по диагонали? А пешка — только вперёд?

— С каких это пор ты сам с собой вслух разговариваешь? — спросил капитан.

Вот те раз! А я и не заметил; И когда капитан подошёл, тоже не заметил. А он, наверное, давно уже тут, потому что слышал все мои размышления.

— Вот ты спрашиваешь, почему слон называется слоном? Так же можно спросить, почему стол называется столом, а кит — китом? И вообще, откуда берутся слова? И зачем они нужны? А ты подумал, что было бы, если бы слов не было? Как бы тогда люди понимали друг друга? Если бы слова уже не были выдуманы, их обязательно пришлось бы выдумать. Потому что словами люди условно обозначают окружающие их предметы, явления, действия. Недаром же «условность» и «слово» происходят от одного корня! Не будь условных обозначений, мы не смогли бы ничего объяснить друг другу.

Но тут я сказал, что, по-моему, капитан ошибается. Потому что если бы люди хотели друг друга понимать, они не изобрели бы так много языков, а говорили бы только на одном, общем для всех. А то повыдумывали и английский, и французский, и японский…

Однако капитан объяснил, что никто нарочно никаких языков не выдумывал, они возникли сами по себе, в далёкой древности, у каждого народа — свой.

— Хотя, впрочем, — заметил он, — твоя мысль о едином языке не так уж плоха. Она приходила в голову многим. И, как знать, может быть, настанет такое время, когда людям разных национальностей не придётся звать на помощь переводчиков и копаться в словарях. Потому что все они будут говорить на едином, международном языке.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Стол находок утерянных чисел

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.


В лабиринте чисел

Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.


Путевые заметки рассеянного магистра

Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.


Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Черная маска из Аль-Джебры

«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.