Фрактальная геометрия природы - [22]
Таким образом, представляется разумным рассматривать реальную береговую линию как кривую, включающую в себя два пороговых масштаба. Внешним порогом Ω можно считать диаметр наименьшей окружности, описывающей остров или материк, а в качестве внутреннего порога ε мы можем взять те самые 20 м, о которых говорилось в главе 5. Весьма сложно указать реальные числовые значения для порогов, однако необходимость введения этих самых порогов не подлежит сомнению.
И все же даже после того, как мы отбросили самые крупные и самые мелкие детали, величина D продолжает означать эффективную размерность в том виде, в каком она описана в главе 3. Строго говоря, и треугольник, и звезда Давида, и конечные терагоны Коха имеют размерность 1. Однако — как с интуитивной, так и с прагматической точки зрения, руководствующейся простотой и естественностью необходимых поправочных членов — разумнее рассматривать терагон Коха на одной из поздних стадий построения как фигуру, более близкую к кривой с размерностью ln4/ln3, нежели к кривой с размерностью 1.
Что же касается береговой линии, то она, вероятнее всего, имеет несколько различных размерностей (вспомните клубок ниток из третьей главы). Ее географической размерностью является показатель Ричардсона D. Но в диапазоне размеров, которыми занимается физика, размерность береговой линии может быть совсем иной — связанной с понятием границы раздела между водой, воздухом и песком.
АЛЬТЕРНАТИВНЫЕ ГЕНЕРАТОРЫ КОХА И КРИВЫЕ КОХА БЕЗ САМОПЕРЕСЕЧЕНИЙ
Сформулируем еще раз основной принцип построения троичной кривой Коха. Построение начинается с двух фигур: инициатора и генератора. Последний представляет собой ориентированную ломаную, состоящую из N равных отрезков длины r. В начале каждого этапа построения мы имеем некоторую ломаную; сам этап заключается в замене каждого прямого участка копией генератора, уменьшенной и смещенной так, чтобы ее концевые точки совпали с концевыми точками заменяемого отрезка. На каждом этапе D=lnN/ln(1/r).
Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.
Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D, однако пока значение D остается меньше 2, решение существует.
Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.
ДУГИ И ПОЛУПРЯМЫЕ КОХА
В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в 1/r=3 раза, используя ее левую концевую точку как фокус, затем в 3>2 раз и т. д. Результат каждой следующей экстраполяции включает в себя предыдущую кривую, и получающаяся в пределе кривая содержит все промежуточные конечные кривые.
ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D
Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности ρ мы можем считать, что масса M(R) стержня длиной 2R, диска или шара радиуса R пропорциональна ρR>E. При E = 1,2 и 3 коэффициенты пропорциональности соответственно равны 2, 2π и 4π/3.
Правило M(R)∝R>D применимо и к фракталам, при условии, что они самоподобны.
В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса R>0=3>k (где k≥0) содержит массу M(R>0), то круг радиуса R=R>0/3 вместит в себя массу M(R)=M(R>0)/4. Отсюда
M(R)=M(R>0)(R/R>0)>D=[M(R>0)R>0>−D]R>D.
Следовательно, отношение M(R)/R>D не зависит от радиуса R и может послужить для определения плотности ρ.
ДВИЖЕНИЕ КОХА
Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.