Фотоны и ядра - [26]
Интенсивность луча однозначно связана с расположением атомов между узловыми плоскостями. Формула, дающая, эту связь, слишком сложна, чтобы мы ее привели. Да это и не нужно. Сказанного выше в отношении двух крайних случаев достаточно, чтобы читатель поверил в существование такой формулы, в которой интенсивность представлена в функции координат всех атомов. Сортность, атомов также учитывается этой формулой, ибо чем больше электронов у атома, тем сильнее он рассеивает рентгеновские лучи.
В формулу, связывающую структуру и интенсивность отраженного луча, входят, конечно, и сведения об ориентации отражающей плоскости, а также о размерах элементарной ячейки. Таких уравнений мы можем записать столько, сколько измерено отражений.
Если структура известна, то интенсивности всех лучей могут быть рассчитаны и сопоставлены с опытом. Но ведь это не та задача, которую нам надо решить! Нужно справиться с обратной задачей: по сведениям об интенсивности нескольких десятков, или сотен, или тысяч отражений найти координаты всех атомов в ячейке. На первый взгляд может показаться, что при современных возможностях электронно-вычислительных машин никакой особой проблемы в решении этой обратной задачи не существует. Много уравнений? Ну так что же, вычислительная машина справится с их решением!
Однако дело обстоит далеко не так просто. Опытные данные — это интенсивности лучей. Интенсивность пропорциональна квадрату амплитуды. Формула связи, о которой шла речь, является, по сути дела, формулой интерференции. Волны, рассеянные всеми атомами кристалла, интерферируют между собой. Происходит сложение амплитуд волн, рассеянных всеми атомами. Вычисляется суммарная амплитуда, а интенсивность находится возведением амплитуды в квадрат. Такую задачу решить ничего не стоит. А как решить обратную? Извлечь квадратный корень из интенсивности, чтобы получить амплитуду? Правильно. Но у корня квадратного ведь два знака!
Надеюсь, вам становится ясной сложность задачи. Уравнений, из которых можно найти координаты атомов, у нас более чем достаточно. Но в правой части уравнения стоят числа известные с точностью до знака.
Казалось бы, дело безнадежное. И действительно, на первых порах исследователи и не пытались решать обратную задачу. Они действовали методом «проб и ошибок». Принимали на основании сведений о родственных структурах, что неизвестная структура выглядит так-то. Рассчитывали интенсивности десятка лучей, сравнивали с опытом. Ничего похожего? Ну что же, примем другую модель структуры.
Для простых случаев такой подход хоть и с трудом, но все же давал верные результаты. Но когда «структурщики» (таково жаргонное название этой группы исследователей) изучили практически все простые структуры, над возможностью решения обратной задачи пришлось крепко задуматься.
В середине 30-х годов догадались, что даже сложные структуры могут быть «решены» (я опять прибегаю к жаргонной фразе), если ограничиться изучением таких молекул, которые содержат много легких атомов и один тяжелый. Тяжелый атом содержит много электронов и рассеивает рентгеновские лучи много сильнее, чем легкие. Поэтому в первом, грубом приближении можно считать, что кристалл состоит только из тяжелых атомов. Если в ячейке один атом, то найти его координаты методом «проб и ошибок» труда не составит. Найдем его координаты и, полагая, что только он и хозяйничает в кристалле, выдвинем предположение, что знаки амплитуд, определенные для фиктивной структуры, состоящей только из тяжелых атомов, те же самые, что и для реальной структуры.
Важнейшим открытием, имеющим двадцатилетнюю давность, явилось доказательство теоремы о наличии связи между амплитудами отражений разных семейств плоскостей. Так, например, связаны между собой знаки амплитуд трех отражений, сдвинутых по фазе по отношению к узлу ячейки на величины α, β и α + β. Оказывается, если произведение cos α ∙ cos β ∙ cos (α + β) больше 1/8 по абсолютной величине, то оно обязательно имеет положительный знак. Можете проверить.
Развитие этой идеи привело к так называемым прямым методам структурного анализа. Даже в достаточно сложных случаях экспериментальный прибор можно соединить с вычислительной машиной, и машина будет «выдавать на-гора» структуру кристалла.
Когда знаки амплитуд отражения установлены, то определение координат атомов становится, как указывалось, задачей на решение большого числа уравнений со многими неизвестными. Важно при этом, чтобы число уравнений по крайней мере в десять, а лучше в сто раз превосходило бы число подлежащих определению координат атомов.
О технике решения этой системы уравнений я рассказывать не буду. Прибегают к обходному пути, который сводится к построению так называемых рядов Фурье электронной плотности. Изложить теорию рядов Фурье, да ещё в применении к проблеме определения структуры, можно, к сожалению, лишь для специально подготовленного читателя. Но мне кажется, что это и ни к чему. Свою задачу, по мере сил своих, я выполнил — разъяснил суть метода.
В каком виде выдает физик — специалист в области рентгеноструктурного анализа — сведения о структуре вещества, которые нужны химику? Представление об этом дает рис. 3.3, на котором показана очень простая структура вещества, называемая барбитуратом аммония.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.