Флатландия. Сферландия - [82]

Шрифт
Интервал

— Ваш мир не бесконечен, — поучительно заметил я, — но он неограничен. Ваш мир образует замкнутую кривую, которая не имеет ни конца, ни начала. Если бы другие обитатели вашего мира не стояли у вас на пути и вы могли бы беспрепятственно двигаться в одном и том же направлении, то спустя некоторое время вы вернулись бы на исходное место.

— Не понимаю, как это может быть, — признался король.

— Здесь-то как раз все ясно, — возразил я, — впрочем, я вас не виню. Ваш мир конечен, поскольку представляет собой окружность — замкнутую кривую.

— Неужто мир искривлен? — спросил король. — Трудно в это поверить!

— Представить себе искривленный мир вы действительно не в силах. Ваш линейный мир искривлен в направлении, которое недоступно вашим ощущениям, ибо оно перпендикулярно вашему миру. Если бы кривизна была значительнее, а мир соответственно очень маленьким, то вы могли бы наблюдать замечательное явление, не уходя для этого далеко от своего «насиженного» места: звук следовал бы вдоль вашего мира, то есть распространялся бы вдоль кривой.

— Мне иногда кажется, что вы нарочно несете несусветную чушь, — сказал король. — Звук следовал бы вдоль нашего мира… А как ему еще следовать? Вы называете это «распространением вдоль кривой». Какая нелепость! Просто невероятно! Кроме того, я не понимаю, что означает слово «кривая». Любой мальчишка в Лайнландии объяснит вам, как происходит распространение звука в действительности.

— Звук в вашем мире распространяется не по кратчайшему пути, — попытался объяснить я. — Точнее говоря, путь, по которому он распространяется, является кратчайшим из возможных в вашем мире, но действительно кратчайший путь лежит за пределами вашего мира.

— Я снова вас не понимаю, — заявил король.

— А между тем это просто, — возразил я, — но не могу же я требовать от вас, чтобы вы поняли то, что не. можете себе представить. Не думаю, чтобы вы могли почерпнуть многое у меня, но я узнал от вас чрезвычайно много полезного.

— Вот уж чего никогда бы не сказал, судя по тому, что вы говорите, — не остался в долгу король.

— Вам этого не понять, — произнес я и исчез, или, лучше сказать, Циркульландия расплылась и скрылась во мраке ночи.

Я проснулся. Привидевшаяся мне во сне страна не давала покоя. Она была искривлена в направлении, которое обитатели одномерного мира не могли воспринимать, поскольку оно проходило перпендикулярно их миру.

Не так ли обстоит дело и с нашим двумерным миром? Может быть, стороны треугольников, которые кажутся нам прямыми, искривлены в третьем, не видимом для нас направлении? Такое искривление можно представить себе лишь мысленно, поскольку увидеть его своими глазами нам, флатландцам, не дано. Вот если бы попасть в третье измерение! Единственная возможность убедиться в искривленности треугольников — спросить об этом у Сферы, когда та навестит нас в следующий раз.

Я решил непременно это сделать.

22. ОТКРЫТИЯ СФЕРЫ

Я еле дождался следующей встречи с доктором Пункто. Разумеется, он сразу понял причину моего хорошего настроения и спросил:

— Вам удалось найти решение?

— Нет, — ответил я, — кричать «Эврика!» еще рано, но я убежден, что мне удалось вплотную приблизиться к источнику наших затруднений. Странное явление, состоящее в том, что сумма углов треугольника больше 180°, можно, как я полагаю, объяснить, приняв следующее предложение. Стороны треугольника искривлены, но их кривизна незаметна. Подчеркиваю, незаметна для нас. Стороны треугольника искривлены в направлении, перпендикулярном нашему миру. Трехмерное существо может без труда это заметить. Нам, обитателям двумерного мира, сие не дано.

Затем я рассказал доктору Пункто о том, как во сне увидел Лайнландию, изогнутую в форме окружности, и как тамошний король не мог понять, что его мир искривлен.

— Вот если бы нам удалось разузнать об истинном положении вещей у какого-нибудь обитателя трехмерного мира, — мечтательно произнес доктор Пункто.

Это замечание навело меня на мысль пригласить моего друга к себе на встречу Нового года, где мы можем рассчитывать на свидание со Сферой.

Я посоветовался с женой, она не только не возражала, но и горячо одобрила мой план. Ведь встреча Нового года — праздник, который принято проводить в кругу семьи, предаваясь размышлениям о семейных радостях и невзгодах. Почему бы нам не пригласить на него нашего нового друга, чтобы не чувствовать себя духовными париями, изгнанными из научных кругов?

Старый год подходил к концу. Последние его недели показались мне месяцами, последние дни — неделями, но наконец наступил предновогодний вечер. Вся моя большая семья была в сборе: моя жена и я, дети и внуки. Пришел к нам и доктор Пункто. Его спокойная, уравновешенная натура, присущая ему непринужденная манера общения покорили всех, и мы чувствовали себя так, словно наша семья пополнилась еще одним членом.

Вечер прошел очень оживленно. Разумеется, я рассказал сказку, затем мы отведали окружностей, испеченных на масле. Время подошло к двенадцати, и мы принялись с нетерпением ожидать, когда пожалует Сфера. Для нашего гостя было непривычно созерцать ее появление: крохотная окружность раздувается, разрастается и наконец достигает максимальных размеров.


Еще от автора Эдвин Эбботт
Флатландия

Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.


Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.


Рекомендуем почитать
Безымянная планета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Экстелопедия Вестранда в 44 магнетомах

Из сборника «Мнимая величина». Рассказ опубликован в журнале «Химия и жизнь», № 1, 1978 г.  .


Космические странники

В книге рассматривается вариант первого контакта с инопланетным разумом.Позитивного…!!! Контакта.


И вам еще кажется, что у вас неприятности?

Значительная часть современного американского юмора берет свое начало в еврейской культуре. Еврейский юмор, в свою очередь, оказался превосходным зеркалом общества благодаря неповторимому сочетанию языка, стиля, карикатурности и глубокой отчужденности.Вот вам милая еврейская супружеская пара, и у них есть дочь — дочь, которая вышла замуж за марсианина. Трудно найти большего гоя, чем он, не так ли?Или все-таки не так?Дж. Данн, составитель сборника Дибук с Мазлтов-IV. Американская еврейская фантастика.


Глюкомань

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Две копейки

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.