Флатландия. Сферландия - [101]
Эти любопытные особенности пространства четырех измерений, хотя они и представляют несомненный интерес, чрезвычайно затрудняют изучение четырехмерной геометрии. Мы не только не в силах представить себе, как может происходить нечто подобное, но и сами факты здесь лежат за пределами нашего разумения. Изучая планиметрию и стереометрию, мы рисуем чертежи и строим модели. Мы постоянно видим сами изучаемые предметы, и поэтому, даже если они сложны, нам нетрудно мысленно представить их себе. Иначе обстоит дело с четырехмерной геометрией: она, как правило, занимается изучением таких предметов, которые никогда не встречались нам на опыте и которые мы даже с трудом сможем представить себе. Каждое утверждение четырехмерной геометрии кажется нам лишенным смысла. Особенно часто такое ощущение охватывает тех, кто впервые приступает к изучению четырехмерной геометрии. Легкость в восприятии ее утверждений, если она вообще достигается, приобретается лишь медленно и ценой постоянных упражнений. Однако в четырехмерной геометрии мы, как правило, сталкиваемся с такими вещами, которые ранее нам никогда не приходилось встречать, и поэтому представить их себе нам необычайно трудно. Пытаясь постичь некий предмет, мы, естественно, стремимся сначала представить его себе в общих чертах, ощутить его. Приступая к изучению четырехмерной геометрии, мы можем лишь запомнить различные отношения и ознакомиться с ними. Возможно, что со временем они, по крайней мере отчасти, смогут сравниться по живости восприятия с понятиями трехмерной геометрии. Не следует, однако, возлагать на это слишком большие надежды, чтобы потом нас не постигло разочарование. Наоборот, если мы с самого начала отдадим себе ясный отчет в том, сколь малого следует здесь ожидать, то такой «реалистический» подход к предмету позволит нам достичь больших успехов и в лучшей степени овладеть им.
Отсюда следует, что понять четырехмерную геометрию отнюдь не легко. Изучать ее можно лишь небольшими порциями, возвращаясь к прочитанному и тщательно обдумывая его. Столь трудный предмет полезно рассматривать с различных точек зрения и изучать в различных изложениях. Поэтому приводимые ниже краткие очерки, принадлежащие перу различных авторов, обладают несколькими преимуществами: они содержат известные повторы, написаны с различных точек зрения, невелики по объему, и их можно выбирать и изучать независимо друг от друга.
Все эти очерки либо не математические, либо написаны в популярной форме. Это обстоятельство не следует упускать из виду. Из сравнения геометрии в пространстве низших размерностей мы извлекаем аналогии для геометрии четырех измерений, и эти аналогии настолько полны, что четырехмерную геометрию можно необычайно подробно изложить, не прибегая к строгой манере рассуждений, принятых в математике. Указанные аналогии служат путеводной нитью даже для математиков, но сама четырехмерная геометрия не зависит от этих аналогий. Как система теорем и доказательств, она возникает из положенных в ее основу аксиом в результате процесса логического рассуждения так же, как возникают геометрии пространств низших размерностей. Если мы хотим убедиться в непротиворечивости четырехмерной геометрии, в ее истинности как математической системы, нам необходимо изучить ее математически. Нематематическое изложение следует воспринимать лишь как описание четырехмерной геометрии, и читатель должен ясно сознавать, что подобное описание предназначено отнюдь не для того, чтобы убедить его хотя бы в возможности построения четырехмерной геометрии. Оно преследует иную цель: показать читателю, что такое четырехмерная геометрия.
Существует другой способ, также позволяющий использовать принцип аналогии. Вообразив себе двумерные существа, обитающие на плоскости и неспособные воспринимать третье измерение, а тем более геометрию трехмерного пространства, мы получим яркое представление о том, как мы сами относимся к четырехмерному пространству и тем или иным понятиям многомерной геометрии. Подобный подход становится еще более интересным, если изложение ведется в форме художественного произведения, повествующего о жизни в двумерном мире. Такое произведение не обязательно должно входить во все детали двумерного существования. Слишком подробное описание жизни в двумерном мире перегрузило бы повествование излишними подробностями, которые отвлекли бы нас от главной цели. Но подобное произведение, написанное так, чтобы искусно ввести нас в некоторые из этих отношений, способно оказать нам огромную помощь в понимании того, как мы сами должны относиться к многомерной геометрии [8].
Геометрия четырех измерений, построенная на основе соответствующей системы аксиом и применяемая обычным способом к точкам, прямым и т. д., представляет собой вполне определенную систему. Однако при попытке облечь наши идеи в физическую форму и представить себе мир либо двух, либо четырех измерений, заполненный двумерной или четырехмерной материей, мы сталкиваемся с явным произволом. Даже для физика материя представляет собой загадку, и мы можем развивать различные теории материи подобно тому, как мы выводим геометрии из различных систем аксиом. Мы не можем утверждать, что до конца постигли все свойства реально существующей материи, поэтому наделение материи в воображаемом пространстве необычными свойствами нельзя считать полностью лишенным смысла. Так, чтобы выяснить, как следует относиться к воображаемому пространству четырех измерений, вполне допустимо предположить, что существует двумерный мир с его обитателями, даже если существование такого мира заведомо исключено. Аналогично мы могли бы предположить, что Луна населена разумными существами, и получить весьма живую картину Лунной поверхности с точки зрения ее обитателей.
Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Ботанический эксперимент профессора Иванова перевернул всю экологию. Рассказ опубликован под рубрикой «Фантасты от 12 до 15».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Зачастую «сейчас» и «тогда», «там» и «здесь» так тесно переплетены, что их границы трудно различимы. В книге «Ахматова в моем зеркале» эти границы стираются окончательно. Великая и загадочная муза русской поэзии Анна Ахматова появляется в зеркале рассказчицы как ее собственное отражение. В действительности образ поэтессы в зеркале героини – не что иное, как декорация, необходимая ей для того, чтобы выговориться. В то же время зеркало – случайная трибуна для русской поэтессы. Две женщины сближаются. Беседуют.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.