Физика на каждом шагу - [9]

Шрифт
Интервал

Множество явлений обыденной жизни находят себе объяснение в этой кратковременности удара, т. е. в том, что сила, даже значительная, не может заметно сдвинуть тело, если время ее действия чересчур кратко. Орех невозможно расколоть плавным, хотя и сильным давлением ладони, но легко раздробить резким ударом кулака: в последнем случае удар не успевает распространиться по мясистой части кулака, и тогда мягкие мускулы наши, не уступая напору ореха, действуют на него, как жесткое тело.

По той же причине пуля пробивает в окне маленькую круглую дырочку, а камешек, брошенный рукой, разбивает в осколки все стекло. Еще более медленный толчок сможет повернуть оконную раму в петлях; ни пуля, ни камешек этого не сделают.

Пример такого же явления представляет перерезывание стебля ударом прута. Напирая медленно прутом, хотя бы с большой силой, вы не перережете стебля, а только отклоните его в сторону. Ударив же с размаху, вы перережете его наверняка, если стебель не слишком толст. И здесь, как в предыдущих случаях, быстротой движения прута достигается то, что удар не успевает передаться всему стеблю. Он как бы сосредоточивается на небольшом, непосредственно затронутом участке, который и принимает на себя все последствия удара.

Вот наконец еще один опыт, столь же простой, сколько и поучительный. Положите шест (например, от половой щетки) на створки раскрытой двери, привяжите к нему бечевкой тяжелый груз (чем тяжелее, тем лучше), а к грузу на другой бечевке – планку, за которую удобно было бы тянуть, ухватившись руками. Какая бечевка разорвется, если вы потянете обеими руками за планку: верхняя или нижняя? Оказывается, что от вас самих зависит устроить так, чтобы разрывалась то верхняя, то нижняя бечевка. Если потянете медленно, оборвется верхняя, если быстро – рвется нижняя.


Рис. 12. Где оборвется бечевка: над или под книгами?


Причину долго искать не придется; вы достаточно подготовлены, чтобы указать ее безошибочно. При медленном натяжении обрывается верхняя бечевка, потому что на нее действует не только сила руки, по также и вес груза; на нижнюю же действует одна лишь сила вашей руки. Иное дело при быстром рывке: груз не успевает за этот краткий миг получить заметного движения, и, значит, верхняя бечевка почти не растягивается; вся сила натяжения приходится на нижнюю бечевку – она и разрывается, даже в том случае, если толще верхней.

Рычаги

Когда приходится приподнимать тяжелый груз, например, большой валун на поле, часто поступают так: подсовывают прочную палку одним концом под валун, подкладывают близ этого конца небольшой камень, полено или что-нибудь другое для опоры и налегают рукой на другой конец палки. Если валун слишком тяжел, то таким способом удается его приподнять с места.

Такая прочная палка, могущая поворачиваться вокруг одной точки, называется «рычагом», а точка, вокруг которой рычаг поворачивается, – его «точкой опоры». Надо запомнить также, что расстояние от руки (вообще от точки, где приложена сила) до точки опоры называется «плечом рычага»; так же называется расстояние от места, где на рычаг напирает камень, до точки опоры. У каждого рычага, следовательно, два плеча. Эти названия частей рычага нам нужны для того, чтобы было удобнее описать его действие.


Рис. 13


Испытать работу рычага нетрудно: вы можете превратить в рычаг любую палочку и пробовать опрокидывать ею хотя бы стопку книг, подпирая свой рычаг книгой же. При таких опытах вы заметите, что, чем длиннее плечо, на которое вы напираете рукой, по сравнению с другим плечом, тем легче поднять груз. Вы можете на рычаге небольшою силою уравновесить большой груз только тогда, когда действуете на достаточно длинное плечо рычага, – длинное по сравнению с другим плечом. Каково же должно быть соотношение между вашею силою, величиной груза и плечами рычага, чтобы сила ваша уравновешивала груз? Соотношение таково: ваша сила должна быть во столько раз меньше груза, во сколько раз короткое плечо меньше длинного.

Приведем пример. Предположим, нужно поднять камень весом 180 кг; короткое плечо рычага равно 15 см, а длинное – 90 см. Силу, с которой вы должны напирать на конец рычага, обозначим буквой х. Тогда должна существовать пропорция:


х: 180= 15: 90.


Отсюда:


Значит, вы должны напирать на длинное плечо с силою 30 кг.

Еще пример: вы в состоянии налегать на конец длинного плеча рычага с силою только 15 кг. Какой наибольший груз можете вы поднять, если длинное плечо равно 64 см, а короткое – 28 см?

Обозначив неизвестный груз через х, составляем пропорцию:


15: х = 28: 84,


откуда



Значит, вы можете таким рычагом поднять не больше 45 кг.

Сходным образом можно вычислить и длину плеча рычага, если она неизвестна. Например, сила в 10 кг уравновешивает на рычаге груз в 150 кг. Какой длины короткое плечо этого рычага, если его длинное плечо равно 105 см?

Обозначив длину короткого плеча буквою х, составляем пропорцию:


10: 150 = х: 105,


откуда


Короткое плечо равно 7 см.

Тот вид рычага, который был рассмотрен, называется рычагом первого рода. Существует еще рычаг второго рода, с которым мы теперь познакомимся.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Математика в занимательных рассказах

В книге раскрываются математические загадки, зашифрованные в приключенческих и фантастических рассказах известных авторов Герберта Уэллса, Жюля Верна, Курда Лассвица и др. Возможно ли путешествие на мыльном пузыре? Существует ли механизм для произвольного движения в четвертом измерении? Ответы на эти и другие — непременно интересные — вопросы любознательный читатель найдет здесь.


Научные фокусы и загадки

«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей!