Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [75]
Современные представления об атомном номере
В наши дни мы рассматриваем атомный номер как основную характеристику химического элемента. Мы знаем, что он представляет собой величину положительного электрического заряда атомного ядра, измеренную в единицах заряда электрона. Таким образом, атомный номер говорит нам, сколько электронов содержится в электрически нейтральном атоме. Распределение и энергия связи этих электронов зависят от заряда ядра, и поскольку поведение элемента определяется числом внешних электронов, которыми его атомы обмениваются в химических реакциях, то можно сказать, что химические свойства элемента зависят от заряда ядра, т. е. атомного номера. Внутренние электроны атома, крепко удерживаемые его ядром, почти не принимают участия в химических реакциях, за исключением разве лишь самых легких атомов, в которых число электронов невелико. Поэтому сближение атомов, происходящее при образовании химического соединения, не может создать силы, достаточные для того, чтобы заставить внутренние электроны заметно изменить свои состояния. Однако внутренние электроны ответственны за испускание и поглощение рентгеновских лучей. Если вырвать из атома внутренний электрон, например бомбардируя его другими атомными частицами, то как только соседний электрон займет его место, атом испустит рентгеновский квант, длина волны которого характеризует заряд атомного ядра. Таким образом, изучая рентгеновские лучи, испускаемые мишенями, изготовленными из различных элементов, мы можем определить атомный номер этих элементов. Поступая так, мы узнаем положение элемента в периодической системе, не прибегая к измерению атомных весов, и поэтому можем надеяться, что не обойдем ни одного из них. Для этого способа безразлично, находятся ли элементы в свободном состоянии или в соединении с другими. Он с абсолютной достоверностью дает нам атомный номер, т. е. заряд атомного ядра, свой для каждого элемента.
Атомы радиоактивных элементов неустойчивы, и хотя они обладают всеми свойствами, присущими отдельному элементу, — определенными химическим поведением, атомным номером и не обнаруживают никаких признаков делиться на еще более элементарные составные части, эти свойства сохраняются у них не вечно. Один за другим атомы радиоактивного элемента внезапно превращаются в атомы другого элемента. Спустя некоторое время количество первоначального (родительского) элемента сокращается за счет появления соответствующего количества другого (дочернего) элемента. Последний обладает всеми свойствами самостоятельного химического элемента (поэтому в свою очередь тоже может быть радиоактивным) и занимает соответствующее место в другом столбце периодической системы. В момент превращения атом выбрасывает мельчайшие осколки — альфа- и бета-частицы (а часто и гамма-лучи), обладающие колоссальной энергией. Излучение, или «радиация», таких частиц нестабильными атомами было первым обратившим на себя внимание свойством этих элементов, поэтому процесс самопроизвольного распада атомов и был назван радиоактивностью (см. гл. 39 и 43).
Альфа- и бета-частицы, вылетающие из атомного ядра, уносят электрический заряд, поэтому меняют заряд ядра, а следовательно, и атомный номер элемента, сдвигая его в другое место периодической системы. (С химической точки зрения причина, которая заставляет нас отнести новый атом к другому столбцу таблицы химических элементов, заключается в том, что с изменением заряда ядра меняется и его атомный номер, т. е. число и конфигурация атомных электронов, а следовательно, и химические свойства.)
Открытие радиоактивности могло бы заставить нас пересмотреть прежнее определение элемента как раз и навсегда неизменной простой субстанции, но нас спасает атомный номер. Атомный номер присущ только элементу; исследование любого соединения даст лишь атомные номера составляющих его элементов.
До начала нынешнего века казалось, что атомный вес столь же хорошо определяет химический элемент, как и атомный номер. Тщательный количественный химический анализ давал всегда одно и то же значение атомного веса элемента. Это казалось настолько естественным, что принималось как само собой разумеющееся. Затем оказалось, что атомный вес свинца, извлеченного из различных руд, немного различается. Могли ли существовать два сорта атомов свинца — легкие и тяжелые? Последующее изучение с помощью масс-спектрографов показало, что большинство элементов представляет собой смесь атомов с немного различающимися атомными весами. Атомные веса, полученные в результате химических измерений, являются средними значениями нескольких различных атомных весов, сложенных в пропорции, которая в окружающем нас мире, по-видимому, всегда остается неизменной. Что же представляют собой настоящие атомные веса? В какой степени их новые измерения спасают дискредитированную гипотезу Проута? Это мы увидим в последующих главах. Здесь же мы расскажем еще об одной причине, которая дает основания считать, что атомный номер лучше характеризует свойства элементов, чем атомный вес.
Электрохимия
Электрический ток легко проходит через водные растворы кислот, щелочей и солей, что говорит о существовании в таких растворах носителей тока. Как вы уже, наверно, догадались, этими носителями являются
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Автор любой биографической книги всегда стоит перед проблемой отбора, тем более автор книги об Эйнштейне. Абсолютно полных биографий не существует; не претендует на это и наш труд. Мы попытались в рамках небольшой работы дать представление об этом человеке так, чтобы его образ проступил, насколько это возможно, через все то, что он сам написал; при этом большое место мы отвели его научной деятельности. Ибо наука была такой существенной частью натуры этого человека, таким стержнем всего его существа, что любая биография была бы не более чем собранием анекдотов и весьма поверхностным сочинением, если бы с легкостью прошла мимо этого.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.