Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [30]

Шрифт
Интервал

— измерение напряженности электрического поля; г — «измеритель напряженности электрического поля».

>Чтобы избежать искажения измеряемого поля и не иметь дела при измерениях с огромными силами, пробный заряд должен быть значительно меньше, чем 1 кулон. Тогда мы должны будем измерять силу, действующую, скажем, на заряд в 1 миллиардную кулона, с помощью пружинных весов, проградуированных в миллиардных долях ньютона. При этом мы определим напряженность поля в ньютон/кулон.


Напряженность поля вокруг малого изолированного заряда изменяется обратно пропорционально квадрату расстояния.

НАПРЯЖЕННОСТЬ ПОЛЯ = СИЛА, ДЕЙСТВУЮЩАЯ НА ПРОБНЫЙ ЗАРЯД / ПРОБНЫЙ ЗАРЯД =



То же самое справедливо для изолированного заряженного шара. Напряженность поля — вектор. Кроме величины, поле характеризуется направлением силы, действующей на положительный пробный заряд. Можно начертить карту направлений электрического поля с помощью воздушного шарика, реального или воображаемого, несущего малый пробный заряд. На фиг. 71 показаны два громадных металлических шара, заряженных положительно и отрицательно. Заряженный воздушный шарик будет перемещаться от одного шара к другому вдоль любой из траекторий, показанных пунктирными линиями. Они называются силовыми линиями. Эти линии указывают направление поля, т. е. направление результирующей силы, действующей на пробный заряд.



Фиг. 71.Определение конфигурации электрического поля.

>Путем геометрического построения находят последовательно в разных точках направление результирующей силы, приложенной к пробному заряду.


Силовые линии искривлены потому, что на пробный заряд действуют силы отталкивания со стороны одного заряда, +Q>1, и силы притяжения со стороны другого заряда, — Q>2, которые изменяются по направлению и по величине от точки к точке. Пользуясь правилом сложения векторов, можно найти конфигурацию силовых линий в подобных случаях, хотя это связано с утомительной процедурой. Предположим, два заряда, создающие поле, равны и противоположны по знаку. Пробный заряд q, помещенный в точку Р, испытывает силу отталкивания F>1 со стороны заряда Q>1 и меньшую силу притяжения F>2 со стороны заряда Q>2 (меньшую потому, что Q>2 дальше). Сложение этих сил дает результирующую силу R, действующую на q. В точке Р силовая линия поля направлена вдоль R. Повторим теперь это рассмотрение для другой, соседней точки Р' затем для точки Р" и т. д. Точка Р' выбрана на малом расстоянии от Р, отсчитанном практически вдоль силы R (которая указывает направление поля в Р), точка Р" взята на R'. Можно затем объединить эти построения и получить часть силовой линии. Существуют методы, приводящие к цели быстрее. В них используются более сложные геометрические представления, но в основе лежит тот же закон обратной пропорциональности квадрату расстояния. Эти методы дают целую сетку силовых линий и позволяют определить картину силовых линий других полей, например, показанных на фиг. 72.



Фиг. 72. Картины электрических полей.


Задача 8

а) Заряды, поле которых показано на фиг. 72, в, не равны. Какой из них больше?

б) Дайте обоснование вашему ответу на вопрос а).

в) Дайте ответ на вопросы а) и б) для зарядов, поле которых показано на фиг. 72, г.


Картины электрического поля

Картину электрического поля можно получить, используя маленькие кусочки материала, которые способны выстраиваться вдоль силовых линий поля. Правда, эти демонстрационные опыты не позволяют «наблюдать» электрические поля столь же отчетливо, как магнитные поля с помощью железных опилок. Металлические предметы, имитирующие Q>1 и Q>2, заряжают какой-нибудь машиной, не останавливая ее, чтобы восполнять утечку заряда. Стеклянную ванну наполняют машинным маслом и в масло насыпают мелко настриженные волосы. Затем в ванну погружают металлические электроды. Волосы располагаются вдоль силовых линий поля. В кусочках волос создаются парные заряды, и они стремятся расположиться вдоль силовых линий. Вам следовало бы посмотреть эти картины электрических полей и сравнить их с аналогичными по конфигурации магнитными полями (см. гл. 34).



Фиг. 73.Определение конфигурации электрического поля опытным путем.

>В чашу с густым маслом насыпают мелко настриженные волосы и создают сильное электрическое поле.



На фиг. 74 показано электрическое поле, созданное равными и противоположными по знаку зарядами +Q и — Q, и магнитное поле вокруг стержневого магнита с «полюсами» +Р и — Р. Если на изображение электрического поля нанести контуры магнита, то обе картины будут в точности одинаковы. Обе построены, исходя из направления сил, обратно пропорциональных квадрату расстояния, которые действуют на воображаемое очень малое пробное тело. Закон обратной пропорциональности квадрату расстояния можно выразить математически простой общей формулой, которая позволяет рассчитать пространственную конфигурацию любого поля сил, обратно пропорциональных квадрату расстояния. Эта формула кажется простой для математиков и сложной для неспециалистов. Вот эта формула, которую мы приводим просто шутки ради:

d>2V/dx>2 + d>2V/dy>2 + d>2V/dz>2 = 0

Символ V обозначает в ней разность потенциалов между данной точкой пространства и некоторым опорным нулевым уровнем, за который принимают потенциал земли, или точки, находящейся в бесконечности. Эта формула настолько важна, настолько универсальна, что для нее ввели даже сокращенную форму написания


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.