Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [196]
I. История радиоактивности
(1890–1915 гг. или с 1915 г. до настоящего времени).
По данному вопросу написаны хорошие книги. Их изучение — интересное занятие, и на эту тему вы можете написать сочинение любой степени трудности. Трудно написать плохую статью на эту тему, потому что как только вы начнете читать, то увидите широкие возможности. И относительно короткая статья легко может начать разрастаться, все шире и шире охватывая тему. Так что эта тема — хороший выбор, если вы не знаете, на чем остановиться.
II. Эксперимент Милликена для определения е
Милликен написал великолепный отчет о своей работе. Сначала обратитесь к его книге. Этого может оказаться достаточным.
III. Камеры Вильсона: принцип действия, снимки, расшифровка снимков
Устройство и действие прибора описать легко. Основная работа при написании этой статьи должна состоять из подборки интересной информации, из выяснения того, какие сведения об атомных и ядерных превращениях можно получать из нее, и наконец из описания результатов исследований. Эта статья легко может превратиться в разочарующе беглый перечень фактов, но, если отнестись к ней внимательно и сделать ударение на выводах, она может получиться очень хорошей.
IV. Треки частиц в фотоэмульсиях или в пузырьковых камерах
Последние — преемники камер Вильсона. С их помощью получено большое количество новой информации о ядрах. В статье требуется дать более подробное описание приборов и методик измерений, но, как и в предыдущем пункте, успех статьи будет зависеть в большой степени от хорошего описания результатов и объяснения выводов.
V. Открытие и свойства рентгеновских лучей
Рентгеновские лучи имеют романтическую историю — есть хорошие описания открытия Рентгена — и нашли очень важное применение в медицине и атомной физике. В этой статье значительное внимание должно быть уделено использованию рентгеновских лучей в физике, например при классифицировании кристаллических структур. Работа над статьей будет легче и плодотворней, если вы уже изучили оптику.
VI. Космические лучи
Частицы высоких энергий, летящие из отдаленных областей космоса, приходят к нам как сложная смесь электронов, ядер, μ-мезонов и т. д. Они могут вызывать сильные изменения в атомах, и экспериментатор может пользоваться этим в своих целях, хотя таких частиц довольно мало. Для этого применяют камеры Вильсона, ионизационные камеры, счетчики. Помещая их в аэростатах, шахтах, на кораблях, можно изучать или использовать влияние атмосферы и магнитного поля Земли. Чтение при изучении предлагаемой темы чрезвычайно трудное, однако это очень богатая область. Было бы разумным выбрать для статьи часть этой области. Великолепный выбор — если у вас смелый и любознательный ум.
VII. Физика частиц высоких энергий
Космические лучи и самые большие ускорители дают возможность исследовать электроны, ядра, μ-мезоны с очень высокой энергией (и скоростью, близкой к с). Статья об экспериментах, результатах и их интерпретациях должна быть трудной, но вознаграждающей за все трудности.
VIII. Масс-спектрографы: устройство, принцип действия, результаты
Подробности простого устройства даны в гл. 38; современные действующие конструкции намного более сложны и остроумны. Это техническая тема, но у вас есть необходимые основы для ее изучения и несколько хороших описаний современных конструкций.
IX. Ускорители: устройство и принцип работы
В настоящее время существует много типов ускорителей, отличающихся от ускорителя Ван-де-Граафа и циклотрона, описанных в тексте. Изучение современных ускорителей требует глубокого понимания электромагнетизма. Это, должно быть, трудная, но интересная работа. Примеры: линейный ускоритель, «бетатрон», ускоритель «космотрон».
X. Свойства атомных частиц
Все еще открывают новые разновидности частиц: α-, β-частицы, электроны, позитроны, нейтроны, нейтрино, мезоны и т. д. Список продолжают еще более странные частицы. Эта тема в общем перекликается с пунктом I, но она продолжена до рубежа современных исследований. Выберите и опишите несколько частиц или дайте обзор всех. Как эти частицы получаются, выделяются и исследуются? Что мы таким образом узнаем об атомах?
XI. Свойства электронов: открытие, измерение заряда и других характеристик, волновые свойства, фотоэффект
Эта тема значительно выходит за рамки курса. При широком охвате материала она окажется трудной, но интересной.
XII. Волны: поведение частиц
Великая революция в физике произошла почти полвека тому назад на основе открытия, что как фотоны, так и частицы имеют двойственную природу: они ведут себя как частицы и имеют в то же время волновые свойства. Изучите экспериментальные доказательства этого. Если вы в ладах с математикой, выясните, как новые идеи повлияли на теоретическую физику.
XIII. Эксперименты, показывающие, что «классическая физика ложна»
Обзор экспериментов, которые привели к развитию квантовой теории, а именно эксперименты по определению удельной теплоемкости, излучение черного тела, фотоэффект, открытие волновых свойств материи и т. д., — трудная тема, требующая упорного изучения, но вы будете вознаграждены за упорство. Вероятно, было бы лучше всего ограничиться двумя из упомянутых экспериментов и изучить их досконально.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.