Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [186]

Шрифт
Интервал

укажите их обычные единицы в системе СИ (основанной на метре, килограмме, секунде):

а) скорость; о) ток, поток;

б) ускорение; п) сопротивление;

в) плотность; р) заряд;

г) удельный вес; с) кинетическая энергия;

д) сила; т) Р. П. (разность потенциалов);

е) импульс; у) э.д.с. (электродвижущая сила);

ж) вес; ф) напряженность гравитационного поля;

з) масса; х) напряженность электрического поля;

и) напряжение; ц) краевой угол (включите рисунок);

к) деформаций; ч) длина свободного пробега молекул газа;

л) давление; ш) постоянная Планка;

м) длина волны; э) отношение e/m для атомной частицы;

н) частота.


2. Напишите короткую заметку, определяющую, описывающую или объясняющую каждое из следующих понятий (~3 строчки для каждого):

а) равноденствие, д) квадрант (инструмент).

б) планета, е) параллакс.

в) комета, ж) плоскость эклиптики.

г) полярная звезда.


3. В каждом случае, данном ниже, ясно показать, что две единицы, используемые там, совпадают или по крайней мере эквивалентны:

а) Напряженность электрического поля может быть измерена в в/м или ньютон/кулон.

б) Напряженность гравитационного поля, измеренная в ньютон/кг, дается ускорением в м/сек>2.

в) Изменение момента количества движения в кгм/сек создает импульс в ньютонсек.

г) Поверхностное натяжение в ньютон/м (сила натяжения на единицу длины кромки мениска) есть в то же время механическая энергия в дж/м>2, необходимая для того, чтобы создать единицу площади новой поверхности.

д) Скорость диссипации энергии в сопротивлении обычно выражается в ваттах, но может быть выражена и в а>2ом (используя соотношение P = I>2R).


4. Назовите физическую величину, для измерения которой используется каждая из нижеуказанных единиц, и дайте ее значение в общепринятой системе единиц СИ:

(Пример: 1 А° — единица длины. Она равна 10>-10 м.)

а) 1 эв; б) 1 квт∙час; в) 1 световой год.


ЭКСПЕРИМЕНТЫ И ЗНАНИЯ

5. Опишите известные вам эксперименты (или те, которые демонстрировались вам на лекциях, или которые вы делали сами в лабораториях), показывающие, что:

а) импульс в столкновениях (даже неупругих) сохраняется.

б) постоянная сила создает постоянное ускорение.


6. Дайте короткий перечень экспериментов, которые встречались вам раньше, для любых трех из указанных ниже случаев, объяснив, как были получены результаты (~1 страница для каждого из трех случаев):

1) измерение радиуса Земли.

2) использование движения Луны в проверке гравитационного закона обратных квадратов.

3) измерение расстояния между Луной и Землей.

4) измерение расстояния между Венерой и Солнцем в единицах расстояния между Солнцем и Землей.

5) измерение величины гравитационной постоянной G, входящей в соотношение F = GM>1M>2/d>2.


СВЕДЕНИЯ О МОЛЕКУЛАХ

7. Какая количественная или качественная информация о молекулах содержится в каждом из нижеследующих пунктов? (Не отвечайте одним словом, а дайте короткое объяснение.)

а) броуновское движение.

б) поверхностное натяжение.

в) диффузия (рассеяние) паров брома.

г) площадь масляной пленки на воде.

д) измерения давления, объема и массы образца воздуха.

е) измерения удельной теплоемкости газа при различных температурах.


СВЕДЕНИЯ ОБ АТОМАХ

8. Напишите короткую заметку (несколько строк), характеризующую вклад каждого из следующих примеров в наши знания об атомах и (или) радиации:

а) рассеяние α-частиц в золоте.

б) картинки треков α-частиц в камере Вильсона, наполненной влажным гелием.

в) измерение е/m для электронов.

г) эксперименты по фотоэлектрическому эффекту.

д) интерференционные полосы Юнга, производимые светом.

е) дифракция рентгеновских лучей на кристаллах.

ж) дифракция электронов на кристаллах никеля.

з) наложение магнитного поля на камеру Вильсона, в которой получают фотографии треков.


9. Коротко опишите, как каждое из следующих экспериментальных открытий повлияло или какой вклад оно внесло в астрономические представления:

а) наблюдения Венеры Галилеем.

б) наблюдение Галилеем пятен на Солнце.

в) открытие Галилеем спутников Юпитера.

г) открытие Урана (1780 г.).

д) открытие Нептуна (1840 г.).

е) очень точные измерения положения Марса, сделанные астрономом Тихо Браге.

ж) измерения Холли и других исследователей, показавшие, что кометы движутся по вытянутым эллипсам.


10. Когда пучок электронов ускоряется в электрическом поле и затем отклоняется в магнитном, можно сделать измерения, которые дадут информацию, касающуюся электронов. Ми не получим величины заряда электрона, но измерения дадут нам другую величину, одну и ту же для всех электронов. Что это за величина, которую можно рассчитать по результатам этих измерений?


11. Физики часто описывают атомы следующим образом. Атомы малы, их линейные размеры порядка нескольких ангстрем. В них имеется много легко отделяемых электронов с малой массой и отрицательным зарядом. Почти вся масса атомов сконцентрирована в очень маленьких ядрах, которые несут положительный заряд (+Z электронных зарядов, если Z — порядковый номер элемента в периодической системе элементов, где элементы распределены по их атомным весам). Некоторые элементы имеют несколько видов ядер (изотопов) с различными массами, но с тем же самым зарядом. Существуют нестабильные атомы, которые самопроизвольно распадаются, излучая


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.