Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [183]

Шрифт
Интервал

Теперь вообразим себе иглу в атомном масштабе. Ее «конец» представляет собой последний слой атомов вольфрама, который лежит на чуточку более широком слое атомов, а тот в свою очередь лежит на еще более широком слое и т. д. Острие может быть столь острым, что последний слой состоит всего лишь из десятка атомов или несколько большего числа их. Однако даже в этом случае атомам гелия конец иглы не представляется очень острым. Что уж действительно выглядит острым, так это края слоев атомов, те места, где какой-нибудь слой обрывается и «поверхность» образует ступеньку между поверхностями соседних слоев.

Картина дифракции рентгеновских лучей говорит о том, что металлический вольфрам кристаллизуется в виде регулярной последовательности атомных слоев, напоминающей аккуратно сложенную горку апельсинов или древних пушечных ядер. На фиг. 213, а изображена модель такой упорядоченной горки, сделанная из маленьких пробковых шариков. Точно так же, как на конце острия иглы, в этой горке у каждого слоя имеются боковые грани, причем каждый следующий слой на несколько шариков шире. Пометив крайние шарики каждого слоя, можно предсказать, какое изображение будет давать острие настоящей иглы из вольфрама. Все крайние шарики на модели были закрашены флуоресцирующей краской, светящейся в ультрафиолетовом свете. На фиг. 213, б приведена фотография этой модели, сделанная в ультрафиолетовом свете. Сравнивая ее с фиг. 213, в, сделанной с помощью настоящей установки, можно убедиться, что картина, создаваемая пучком атомов гелия, отражает подлинную картину послойного расположения атомов вольфрама.

Такие эксперименты должны выполняться при очень низких температурах, иначе собственное движение атомов гелия будет вносить заметные искажения, — желательно, чтобы ионы двигались только за счет электрического поля. Кроме того, при обычных температурах атомы гелия, по-видимому, рассеиваются на атомах вольфрама без последующей ионизации: для ионизации, вероятно, необходимо их более длительное пребывание в электрическом поле, а это имеет место лишь тогда, когда ионы движутся медленно.



Фиг. 213.Интерпретация изображения острия иглы в ионном микроскопе. (Из Scientific American, 196, June 1957.)

>а — модель из уложенных слоями пробковых шариков для воспроизведения картины расположения атомных слоев на конце очень острой вольфрамовой иглы; б — крайние шарики каждого слоя модели а были покрашены флуоресцирующим веществом, способным светиться в ультрафиолетовом свете; здесь приведена фотография этой модели в ультрафиолетовом свете; в — фотография, сделанная с помощью ионного микроскопа. Изображение создается ионами, летящими с острия вольфрамовой иглы. 



Фиг. 214.Вид острия вольфрамовой иглы (помещаемой в ионный микроскоп) и обычной острой иглы (слева) в обычном оптическом микроскопе.

>Фотография Эрвина В. Мюллера.


Поэтому аппаратура охлаждается жидким водородом (спокойно кипящим в сосуде с кипящим азотом). При этом изображение таково, как на фиг. 215.



Фиг. 215.Фотография острия вольфрамовой иглы, сделанная на ионном микроскопе.

>Фотография передает картину расположения атомных слоев на кончике иглы и ее боковых сторонах (увеличение 3 000 000). >(Фотография Эрвина В. Мюллера, Пенсильванский университет.)


Если дать вольфраму чуть-чуть нагреться, то картина еще остается прежней, но при этом видно движение некоторых атомов вольфрама: видно, как некоторые из них мигрируют и испаряются.

Правильно ли сказать: «На этой фотографии я вижу сами атомы непосредственно»? Это зависит от уровня вашего мышления. Если вы не знаете, что такое электрическое поле, что такое распределение заряда и поля вблизи острия, что такое ионизация, средняя длина свободного пробега, свечение экрана… вы, наверное, скажете: «Какое там непосредственно! Эта картина — всего лишь какая-то система пятен плюс туманные рассуждения насчет атомов».

Однако, будучи уже знакомым с достижениями науки, вы можете с уверенностью воскликнуть: «Да, я вижу сами атомы!» И за этим утверждением будет скрываться обретенное вами глубокое понимание.


ЛЮДИ НАУКИ

Ученые

Я надеюсь, что здесь, в конце курса, вы поразмышляете об ученых и о том, ради чего они делают открытия и объясняют их. Пифагор… Птолемей… Коперник… Тихо… Кеплер… Галилей… Ньютон… Джоуль… Максвелл… Резерфорд… Эйнштейн… де-Бройль… Бор — все они сделали великие открытия, все внесли вклад скорее в наше интеллектуальное богатство, чем в житейские блага или успехи, и то, что они дали нам, составляет непреходящие ценности, достающиеся бесчисленным поколениям. При взгляде в будущее мы видим обширную область фактов, законов, теорий, предположений — научные знания, — которая будет увеличиваться все больше и, как мы надеемся, будет стремиться к завершенности. Это изучение природы — составляющая часть интеллектуальной жизни человека — приносит удовлетворение всем ученым. Наука в их руках — это не только деятельность по собиранию фактов, или установлению законов, или выбору направления экспериментов. Это прежде всего искусство чувствовать, как лучше выбрать точку зрения или наиболее подходящее направление исследований, чтобы расширить понимание природы. Чистая наука — погоня за знаниями и пониманием природы — всегда будет удовольствием. Что же, ученые в их башне из слоновой кости, башне из экспериментов и теорий работают лишь для себя, ничего не давая остальному человечеству, подобно безмолвным поэтам в уединении? Ответ мыслителя: «Нет, они прибавляют человеку интеллектуальные возможности». Ответ практика: «Нет, ученые полезны, поскольку со временем их открытия используются в технике». Но сегодня существует новая группа исследователей-инженеров, которые соединяют деятельность ученого и инженера, и наш вопрос становится более общим. В каком вообще соотношении по их значению для человечества находятся ученые, инженеры и инженеры-физики?


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.