Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [138]

Шрифт
Интервал

Куда деть энергию, запасенную огромным магнитом, когда после цикла ускорения необходимо уменьшить магнитное поле? Нельзя допустить, чтобы она бесполезно терялась, а потом дорогой ценой снова производить ее для ускорения очередной группы частиц. Следовательно, ее нужно сберечь, используя либо огромные маховики, либо систему гигантских конденсаторов и дросселей (энергия магнита в первом случае запасается в виде механической, а во втором — в виде электромагнитной энергии).

Так как ионы все время движутся по одной и той же орбите, частота генератора должна меняться: после каждого оборота энергия ионов увеличивается, и, следовательно, возрастает, хотя и не намного, их скорость. Поэтому должны быть специальные схемы, которые согласованно увеличивали бы частоту генератора и напряженность магнитного поля. Такие схемы успешно разработаны; большие машины, использующие их, ускоряют ионы до энергии 5 Бэв и более. При столкновении протонов такой высокой энергии (масса протонов при этом увеличивается примерно в 6 раз) с ядрами мишени образуются целые пучки мезонов и даже антипротоны, свойства которых теперь исследуются.



Фиг. 116.Кольцевой ускоритель.

>Гигантский кольцевой магнит построен из множества тонких С-образных секций. Камера в виде бублика помещается между «челюстями» кольцевого магнита.



Фиг. 117. Кольцевой ускоритель.

>Быстрые ионы, предварительно ускоренные на установках типа генератора Ван-де-Граафа, инжектируются в кольцевой ускоритель, совершают в нем около миллиона оборотов (энергия их при этом достигает нескольких Бэв) и затем отклоняющей системой выводятся наружу. 


Задачи к главе 42


Задачи 1, 2. Предварительные задачи (на последней странице предыдущей главы)

Задача 3. Циклотрон и альфа-частицы

Предположим, что циклотрон, рассчитанный для ускорения протонов, используется для ускорения альфа-частиц, являющихся дважды ионизованными атомами гелия Не>++, т, е. ядрами атомов гелия, масса которого в 4 раза, а заряд в 2 раза больше, чем у протона. Магнитное поле циклотрона не меняется.

а) Как следует изменить, если нужно вообще, частоту генератора?

б) Какой будет кинетическая энергия альфа-частиц по сравнению с расчетной кинетической энергией протонов? (Релятивистскими поправками пренебрегите.)


Задача 4. Линейный ускоритель

Представим, что «спиральная» траектория ионов в циклотроне развернута в прямую линию. Тогда, не принимая во внимание магнит, циклотрон превратится в «линейный ускоритель». Подобные машины сконструированы и хорошо работают, но очень дороги. Для движения ионов необходимо строить очень длинные трубы, откачанные до высокого вакуума. Ионы создаются в одном конце трубы, ускоряются при движении вдоль трубы и попадают на мишень в противоположном конце. Частицы ускоряются электрическим полем, создаваемым с определенными интервалами вдоль трубы. В одном из вариантов линейного ускорителя внутри вакуумной трубы располагается серия металлических цилиндров А, В, С, D, Е…, удлиняющихся по мере удаления от ионного источника, которые экранируют ионы при их движении внутри цилиндров и, обладая разным потенциалом, создают ускоряющее электрическое поле в узких щелях между собой. Для этого цилиндры через один, т. е. А, С, Е, …, соединены с одним полюсом высокочастотного генератора, а лежащие между ними цилиндры В, D… — с другим.

а) Как связаны между собой расстояние между ускоряющими промежутками А>2-В>1, В>2-С>1…., скорость ионов (постоянная внутри цилиндров) и частота генератора, если ионы влетают в каждый ускоряющий промежуток в тот момент времени, когда электрическое поле в нем максимально?

б) Как должны быть расположены ускоряющие промежутки (т. е. как нужно менять длины цилиндров), чтобы происходило ускорение медленных ионов из состояния покоя при постоянной частоте генератора?

в) Как должны быть расположены ускоряющие промежутки (частота генератора постоянна), чтобы ускорялись очень быстрые частицы (например, электроны, предварительно ускоренные до энергий в несколько Мэв)?



Фиг. 118.К задаче 4. Линейный ускоритель.

Глава 43. Ядерная физика



«Цель научного и инженерного поиска — увеличить и улучшить наши знания об окружающем мире. Постоянное стремление добыть эти знания вызвано либо простым желанием постичь законы природы, либо желанием использовать силы природы для улучшения материальных условий жизни человека. Оба эти стремления можно грубо охарактеризовать как жажду познавать и стремление использовать. В ученом преобладает первое, в инженере — второе. Это различие в мотивах продолжает существовать, хотя методы и специфические задачи науки и инженерного дела становятся все более схожими».


«Хотя все наши научные и технические знания основаны на наблюдении, эксперименте и логическом анализе, накапливались они двумя различными путями в соответствии с двумя различными стремлениями, о которых я упомянул выше. Технические науки всегда были более эмпиричны. Инженера или изобретателя прежде всего интересует практическая сторона дела. Если он способен создать машину или придумать процесс, которые дадут ему желаемый результат, то его может и не интересовать, почему все так происходит. Но как раз это «почему» и волнует ученого. Часто для того, чтобы как-то продвинуться в понимании, ученому необходимо упростить условия решаемой им задачи. Ему приходится сократить число переменных. Но, делая это, он часто оказывается изучающим нечто, что не имеет непосредственного отношения к практической стороне жизни. Исторически наука развивалась, обходя проблемы, слишком трудные для понимания. Прогресс же в технических науках происходил на основе успехов в использовании определенных процессов или машин, причем независимо от того, все ли при этом вполне понятно. Для инженера на первом месте польза от машины или процесса, для ученого — понимание…»


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.