Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [102]

Шрифт
Интервал

а) Покажите на эскизе испарение молекулы с ОЧЕНЬ маленькой круглой капли и сообразите, почему молекула в этом случае может улетучиваться особенно легко. (Намек: молекулы воды притягиваются друг к другу — это проявляется в поверхностном натяжении, — но это притяжение действует только на коротком расстоянии в несколько молекулярных диаметров. Это ограничение проявляется в том, что пленки нефти и т. п. имеют одинаковое поверхностное натяжение независимо от того, являются ли они толстыми, тонкими или очень тонкими, — только предельно тонкие пленки имеют меньшее поверхностное натяжение.)

б) После этого угадайте причину, по которой облако водяных капель с трудом образуется даже в пересыщенном воздухе. (Намек: каждая дождевая капля должна начинаться, как…?)

в) Обычный пыльный воздух содержит частицы пыли, к которым вода может легко прилипать. Хотя частицы и кажутся микроскопическими, они все же велики по сравнению с крошечными водяными каплями. Почему туман легче образуется в пересыщенном пылью воздухе?

г) Образец влажного пыльного воздуха помещен в цилиндр с подвижным поршнем. Поршень быстро выдергивается, и воздух расширяется. Почему образуется туман? (Заметим, что холодный воздух насыщается меньшим количеством водяных паров, чем теплый.)

д) Пыль способна формировать водяные капли; однако и в воздухе, свободном от пыли, капли могут образоваться в присутствии электрически заряженных молекул или атомов (= «ионов»). (Очевидно, что молекулы воды будут притягиваться к электрически заряженным объектам. Молекулы воды можно представить в виде продолговатых тел с «+» зарядом на одном конце и «—» зарядом на другом. Можно также представить, что внешнее поле легко деформирует молекулы, придавая им указанную выше «форму», подобно тому как магнит превращает мягкое железо в постоянный магнит.) Объясните, почему водяные капли легко образуются на ионах, несущих «+» или «—» заряд?



Фиг. 35.К задаче 1.

>Простейшая камера Вильсона.


е) Мы полагаем, что атомы имеют электроны, которые можно отделять. Некоторые атомы легко теряют электрон; другие атомы легко захватывают электрон. (После потери или приобретения электронов атомы становятся «ионами».) Обычный воздух не проводит тока, но воздух становится проводником, когда в нем возникает пламя или когда через него проходят альфа-, бета-, гамма- или рентгеновские лучи. Некоторые из этих лучей представляют собой движущиеся заряженные частицы, которые оставляют след из заряженных ионов, когда они пролетают в воздухе (трек). Подобные высокоскоростные «пули» движутся слишком быстро, чтобы собирать воду на себе. Если мы хотим увидеть треки их во влажном воздухе, он должен подвергнуться быстрому охлаждению. Объясните, почему треки могут стать видимыми.

ж) Прибор, который позволяет наблюдать треки «ядерных пуль» визуально, называется камерой Вильсона. В простейшем виде камера Вильсона представляет собой стеклянный цилиндр, содержащий влажный воздух над поршнем из воды, управляемым сжатием резиновой груши. Объясните, почему следующая процедура сделает треки видимыми: 1) сжатие резиновой груши, 2) выдержка в течение некоторого времени, 3) быстрое отпускание резиновой груши; при этом появятся треки в виде линий из капелек воды.


Задача 2. [Эта задача о ионах (носителях) в газах. Они подобны ионам, которые дают красное свечение в неоновых трубках, используются в счетчиках Гейгера, вызывают электрические искры. Ответы старайтесь обосновать.]

Если в простой цепи с батареей имеется воздушный зазор, постоянный ток в цепи протекать не будет, так как воздух является изолятором — он имеет «бесконечно большое сопротивление». Однако если в зазор введено пламя, в цепи пробегает очень маленький ток. (Все токи в этой задаче являются ОЧЕНЬ маленькими, например 10>-12 а.)

Если ввести в воздушный зазор или поместить вблизи него небольшое количество соединений радия, также потечет небольшой ток. Этот ток не приходит из пламени или радия. Ток появляется, когда воздух становится слабо проводящим.



Фиг. 36А. К задаче 2.


а) О чем это говорит, что могло случиться с (некоторыми) молекулами? Если препарат радия оставить у зазора, ток будет постоянным.

Если теперь увеличить напряжение (с помощью делителя напряжения или увеличения числа батарей), ток пропорционально увеличится (закон Ома) до определенной величины. При еще больших напряжениях ток достигнет постоянного значения А, которое будет сохраняться в широкой области напряжений.

б) Что, по-вашему, случается на стадии А? При значительно более высоких напряжениях ток быстро возрастает (участок В), и вскоре образуется искра.

в) Что, по-вашему, происходит на стадии В, когда батарея создает очень сильное электрическое поле в воздухе?

г) (ТРУДНЫЙ). Если давление воздуха уменьшить наполовину (плотность упадет вдвое, и длина свободного пробега удвоится), какие изменения, по-вашему, произойдут в графике и почему?


Задача 3

Если мы создадим очень большое электрическое поле, например, между двумя металлическими шариками, между ними проскочит искра,

а) Во время проскакивания искры протекает ток в цепи какого-то источника, который используется, чтобы зарядить шарики. Какие вещества несет этот ток в искре?


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.