Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [7]

Шрифт
Интервал



Фиг. 16.Затмения Луны.

>Наблюдаются, когда Луна проходит через тень, отбрасываемую Землей.


Календарь

День. Движение Солнца от полудня до полудня определяет почти постоянный день. Однако продолжительность этого дня все же несколько изменяется: полдень, отмечаемый по солнечным часам, в одни времена года опережает полдень, отмечаемый обычными часами, а в другие отстает от него, иногда на несколько минут. Истинное движение Солнца по эклиптике не одинаково на протяжении года — Солнце движется быстрее зимой; таким образом, в его дневном движении наблюдаются некоторые изменения. (В движении Луны наблюдаются еще более сложные нерегулярности.)

Движение звезд относительно небесной оси, проходящей через Полярную звезду, определяет постоянный, несколько более короткий день; этот день для человека служил стандартом до тех пор, пока не появились более совершенные электронные часы.



Фиг. 17. Затмения происходят только в определенные моменты времени.

>Угол А равен 5°. Однако линия, по которой плоскость лунной орбиты пересекает плоскость эклиптики, медленно вращается вследствие возмущений, и затмения не всегда происходят в одно и то же время земного года.


Месяц. Пожалуй, самым первым источником для составления календаря была Луна. Месяц, отсчитываемый от полнолуния до полнолуния, равен приблизительно 29>1/>2 дням. Полная Луна находится точно напротив Солнца, так что этот месяц непосредственно связан с движением Солнца. За 29>1/>2 дней Солнце смещается почти на 29° по эклиптике, так что Луна, чтобы догнать Солнце, совершает оборот на (360 + 29)° по отношению к звездам. Если звезды считать неподвижными, то по отношению к ним полный оборот Луны будет занимать 27,3 дня. Подобно составителям древнего календаря, мы пользуемся месяцем, равным 29>1/>2 дня, чтобы предсказать наступление полнолуния, новолуния и т. д.; если же нам надо вычислить движение Луны под действием сил тяготения, мы пользуемся месяцем, равным 27,3 дня.

Год. Представление о годе отражает:

а) повторение времен года;

б) время, которое требуется для того, чтобы Солнце вернулось на прежнее место на звездном небосводе или чтобы звезды оказались в том же полуночном положении на небе; это представление несколько отличается от предыдущего;

в) период в 12 (или 13) лунных месяцев; легко видеть, что такой год вскоре не будет совпадать с солнечным годом (состоящим из различных времен года).



Фиг. 18. Движение планеты, вблизи Эклиптики, (в поясе зодиака).

>а — общая область, в которой лежит путь планеты — пояс зодиака, б — при более внимательном рассмотрении путь планеты имеет вид петли, т е. представляет собой эпициклоиду.


Планеты

Отдельные яркие «звезды» изменяют свое положение по отношению к Солнцу, Луне и остальным звездам столь нерегулярно что им было дано название «планеты», что означает «странники».

Планеты выглядят очень яркими звездами, самые слабые из них мерцают, и они блуждают по своим орбитам, лежащим вблизи эклиптики. Планеты следуют за движениями Солнца и Луны относительно созвездий зодиака, но с различными скоростями, и время от времени в обратном направлении. Первобытный человек, вероятно, наблюдал наиболее яркие планеты, но не мог извлечь никакой пользы из этих наблюдений. Впрочем, планеты, подобно затмениям, воздействовали на воображение суеверных людей.


Зодиак

По зодиаку проходят годовая траектория Солнца, месячная траектория Луны и траектории всех планет. Другими словами, орбиты Земли, Луны и планет лежат почти в одной и той же плоскости. Астрологи определяли судьбу и характер человека в зависимости от того положения в зодиаке, которое в момент рождения человека занимали Солнце, Луна и планеты.


Планеты и их движение

В эпоху ранних цивилизаций были известны пять «странствующих» планет, кроме Солнца и Луны, которые тоже причислялись к ним:

Меркурий и Венера — яркие «звезды», которые никогда не удалялись от Солнца, а двигались то впереди него, то позади него, так что их можно было видеть только на рассвете или на закате. Меркурий — небольшая планета, траектория которой проходит очень близко от Солнца и которую поэтому трудно обнаружить. Венера — большое яркое светило на вечернем или утреннем небе. Ее называли то «вечерней звездой», то «утренней звездой», древние астрономы не представляли себе, что это одно и то же светило.


Марс — красноватая «звезда», описывающая петлеобразную траекторию относительно зодиака, причем полный оборот она совершает примерно за два года.

Юпитер — очень яркая «звезда», медленно движущаяся относительно эклиптики и совершающая полный оборот за 12 лет.

Сатурн — яркая «звезда», медленно движущаяся относительно эклиптики, причем ее полный оборот занимает приблизительно 30 лет.

Юпитер и Сатурн описывают на своем пути много петель, примерно по петле за земной год.

Когда одна из внешних планет — Марс, Юпитер или Сатурн — описывает на своем пути петлю, она движется по отношению к звездам все медленнее и медленнее к востоку, останавливается, в течение некоторого времени движется в обратном направлении к западу, снова останавливается и затем начинает двигаться опять к востоку, подобно Солнцу и Луне


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.