Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [22]

Шрифт
Интервал

В течение десяти веков со времени создания греческой астрономии до первых научных экспериментов возникали те или иные теории, но работы этих ученых остались неизвестными. После многовекового темного царства средневековья забрезжил свет.

Английский монах Роджер Бэкон (~ 1250 г.) стал взывать о необходимости проведения экспериментов. Он был честным и горячим человеком, нападал на священников и философов, настаивал на том, что накапливать знания необходимо на основе фактов, а не корпеть над скверными латинскими переводами. В своих книгах он клеймил невежество и предрассудки, призывая людей: «Перестаньте подчиняться догмам и авторитетам; взгляните на мир!»

Его резкое поведение послужило причиной конфликта с его собратьями монахами и с церковью. Учение Роджера Бэкона, по всей вероятности, было под запретом, а его книги, как и книги его единомышленников, на долгое время были забыты. Бэкон на столетия опередил свое время. (Жившему много позднее Фрэнсису Бэкону приписывали новый подход к науке. Однако вряд ли его вклад был более значителен.)

Двумя столетиями позже появился Леонардо да Винчи (~ 1480 г.) — великий художник, мыслитель и ученый. Занимаясь механикой, он классифицировал понятия массы, силы, движения, он высказал новые научные представления и создал искусные модели. Его знаменитые заметки являются сокровищницей изобретений в области механики и едва ли не самых прекрасных в истории искусства рисунков. Составляя эти заметки, он выступал как в роли историка, так и в роли пророка, занося в них интересные идеи, свои и чужие, и остроумные схемы, которые он придумывал. Это было началом нового подхода к науке, того, о котором мечтал Роджер Бэкон.

Тем временем накапливались астрономические данные, в том числе наблюдения арабских астрономов и др. Нужды медицины и мореплавания дали толчок развитию науки в эпоху Возрождения.

Альфонсо X, Кастильский (~ 1260 г.) приказал своей школе навигаторов составить новые таблицы для предсказания движений небесных тел. Эти таблицы были составлены, отпечатаны лет через 200, и ими пользовались еще сотню лет. Ходили слухи, что когда Альфонсо Кастильскому впервые объяснили сложную систему Птолемея, он сказал, что если бы при сотворении мира посоветовались с ним, он сделал бы все значительно проще и лучше.

Ученые провели дополнительные измерения, и система Птолемея была усовершенствована с математической точки зрения, но даже в эпоху раннего Возрождения гелиоцентрическая гипотеза не рассматривалась серьезно до тех пор, пока Коперник не написал свою знаменитую книгу. Через все времена с эпохи Возрождения и до наших дней великая плеяда ученых создавала механику от туманных средневековых воззрений до современного состояния точной и совершенной науки, используя при этом Солнечную систему (а позднее атом) как огромную лабораторию, в которой отсутствует трение. Нас интересуют не только достижения этих ученых в области физики, но и взаимоотношение их деятельности с жизнью и воззрениями других людей. Поэтому мы дадим не только описание их деятельности, но и краткие биографии.

Сначала приведем краткие справки, демонстрирующие вклад каждого из них в науку. (В этих характеристиках, как и прежде, мы указываем не даты рождения или смерти, а те годы, когда данному лицу было около 40 лет.)


Николай Коперник (~1510 г.). Предполагал, что гелиоцентрическая система планет проще птолемеевой. Написал большую книгу, в которой подробно обосновал такую систему, вычислил ее размеры и прочее. После его смерти эта точка зрения получила дальнейшее распространение и развитие, но еще долгое время не была общепризнанной.


Тихо Браге (~1580 г.). Горя желанием узнать как можно больше о планетах, стал блестящим наблюдателем, гениальным изобретателем точных приборов. Построил первую большую обсерваторию. Знал о гипотезе Коперника, но не принимал ее целиком; не особенно увлекался теорией. Составил значительно более точные таблицы планет, чем те, которые существовали до него, их впоследствии дополнил и опубликовал Кеплер.


Иоганн Кеплер (~1610 г.). Прекрасный математик, обладавший тонкой научной интуицией и твердой верой в то, что в основе явлений природы лежат простые правила. Пользуясь наблюдениями своего учителя Тихо Браге, вывел три основных закона движения планет. Однако не смог дать надлежащего объяснения этим законам.


Галилео Галилей (~1610 г.). Провел эксперименты и создал научные основы механики и астрономии. К ужасу классических философов, пренебрегая грозившей ему лично опасностью, провозгласил необходимость твердо держаться эксперимента. С помощью изобретенного им телескопа подтвердил правильность теории Коперника, которую страстно защищал, пока не стал жертвой инквизиции.


Рене Декарт (~1640 г.). Этот французский философ описал картину строения Вселенной, выведенную из общих принципов, которые, по его мнению, созданы богом. Возражал против представления о вакууме и считал, что пространство заполнено вращающимися вихрями, увлекающими за собой планеты. Величайшим вкладом в науку явилось введение в геометрии прямоугольной системы координат: применение графиков позволило связать алгебру с геометрией; заложил основы дифференциального исчисления. Начиная с XVII века создавались большие научные общества для обмена знаниями и стала свободно развиваться наука, основанная на экспериментах.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.