Физика для любознательных. Том 1. Материя. Движение. Сила - [50]
а) по соотношению v = at, подставляя в него измеренные значения t для этого расстояния и значение а, полученное в ответе на вопрос 6;
б) по соотношению v>2 = 2as, подставляя выбранное значение s и полученное значение а;
в) по наклону графика I: проведите касательную при значении s = 0,6 м, продолжите касательную на бумаге, выберите на ней две далеко отстоящие точки, найдите их координаты и запишите их; с их помощью вычислите наклон касательной (см. обсуждение в гл. 1, а также пояснения к графикам в гл. 11);
г) сравните результаты методов (б) и (в); выразите разность между скоростью, полученной по методу (в), и скоростью, полученной по методу (б), в виде % от этой скорости (см. обсуждение относительно отклонения в гл. 11).
9. Если бы колесо не вращалось, а скользило без трения, каким было бы ускорение: таким же? бóльшим? меньшим? Почему? (Это очень важный вопрос и над ним стоит поразмыслить. Для полного ответа требуется более глубокое знание физики. Если вы нашли ответ, то благоразумно отложите свою догадку, не проверяя, целиком ли она верна, до следующей главы, где будет дан ясный ответ.)
Опыт 4. Маятники. Из всех возможных объектов исследуем только простой маятник, т. е. небольшой шарик, раскачивающийся взад и вперед на длинной нити. Постарайтесь ответить только на один вопрос: как время колебания, или период маятника, зависит от каждого из физических факторов, которые могут влиять на него?
Даже при таком ограничении задача достаточно сложна, если не последовать хорошему правилу изменять каждый раз только один из выбранных факторов, сохраняя другие постоянными.
Периодом колебания называют время одного полного цикла колебания «туда и сюда». От каких факторов может зависеть период?
Очевидно, от длины маятника, которой очень легко дать определение «расстояние от точки подвеса до центра шарика», но не просто, да и неразумно измерять непосредственно в такой форме. Хорошо известно, что более длинному маятнику требуется больше времени, чтобы совершить одно колебание. Но какая именно связь существует между периодом Т и длиной L? Действует ли здесь простое математическое правило? (Правило существует. Его можно вывести на основании сведений из других областей физики, например зная свойства векторов силы и ньютоновы законы движения.
Но здесь вы должны провести «эмпирическое исследование», т. е. с помощью собственных экспериментов получить от природы прямые ответы на поставленные вопросы.)
Какие еще факторы могут влиять на Т? Влияют ли на Т масса или вес шарика, амплитуда или размах колебаний, а может быть, и другие факторы?
Для начала исследуйте, как Т зависит от: длины маятника L, амплитуды колебания А° в каждую сторону от вертикали, массы шарика М.
Чтобы не спутать различные эффекты, поддерживайте две из трех величин L, А, М постоянными и, изменяя третью, производите измерения Т. Имеет ли значение, какую из трех величин вы будете изменять в первую очередь? В данном случае это важно — здесь существует единственный логический правильный выбор. Пока вы будете размышлять над этим, проделайте некоторые предварительные измерения для овладения методикой работы.
Опыт 4(а). Предварительные измерения. Настоящий ученый вовсе не ожидает, что его приборы сразу же дадут поток точных измерений. Он «экспериментирует со своим экспериментом», проверяя различные методики, совершенствуя свое искусство. Выберите длинный маятник (60–90 см), и произведите точные измерения периода его колебаний с помощью хорошего секундомера (или наблюдая через увеличительное стекло за секундной стрелкой обычных часов, в то время как ваш напарник будет подавать сигналы). Запишите ваши результаты. Сравните их с измерениями вашего напарника. Посмотрите, какими методами пользуются соседи, и подготовьтесь к критическому обсуждению методики измерений.
Групповое обсуждение
Когда вы приобретете опыт работы с приборами, создайте из группы студентов и преподавателя «исследовательский совет» для обсуждения трудностей и методов работы. В ходе такого обсуждения следует сказать о полезных приемах работы, которые вам удалось изобрести, покритиковать ошибки, замеченные вами у товарищей, обсудить надежность оборудования, выбрать хорошие методы работы и спланировать порядок эксперимента. Проводить обсуждение до выполнения предварительных опытов не имеет смысла; оно либо сведется к простому угадыванию, либо преподавателю придется выдать подробные готовые рецепты работы. Как и при работе настоящих исследователей, для серьезного обсуждения требуется практическое знакомство с аппаратурой. В ходе обсуждения вы обнаружите, что имеются веские причины начать исследование с влияния амплитуды, а не с массы или длины.
Опыт 4(б). Измерение зависимости Т от А. Тщательно измерьте значения Т при разных амплитудах, например 80, 60, 40, 30, 20, 10°…. В ходе опыта постройте приблизительный график зависимости Т от А, чтобы можно было им руководствоваться при выборе точек для последующих измерении. Если окажется, что точки графика занимают на бумаге только узкий участок, построите другой график в увеличенном масштабе по одной из осей координат, чтобы на таком увеличенном графике лучше была видна форма зависимости. (На увеличенном графике начало координат не обязательно должно умещаться на бумаге — оно может находиться и за ее пределами.) Если вы встретитесь с трудностями, обсудите их с преподавателем; беседу с преподавателем рассматривайте как возможность полупить хороший совет от другого ученого, а не как кратчайший способ подглядеть правильный ответ.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.