Физика для любознательных. Том 1. Материя. Движение. Сила - [105]

Шрифт
Интервал

. При неподвижной оси с помощью выстрела проделываются «стандартные отверстия» X. Угловое смещение отверстий (А — В) служит мерой времени пролета пули.



Фиг. 202.Другой метод измерения скорости ружейной пули.


Третий закон Ньютона

Если мы уверены, что количество движения Mv сохраняется (никогда не теряется и не создается вновь, а происходит лишь обмен количеством движения между телами), то можно сделать вывод, что два тела, которые сталкиваются или взаимодействуют между собой, должны действовать друг на друга с равными и противоположно направленными силами. Это третий закон движения Ньютона:

ДЕЙСТВИЕ РАВНО ПРОТИВОДЕЙСТВИЮ

Вот доказательство этого утверждения.

Предположим, что два тела, А и В (фиг. 203), сталкиваются друг с другом (или обмениваются количеством движения каким-нибудь иным способом). Обозначим изменение количества движения тела А через Δ(Mv)>A, а изменение количества движения тела В — через Δ(Mv). Тогда, если количество движения сохраняется, Δ(Mv)>A и Δ(Mv) должны быть равны и противоположно направлены

Δ(Mv) = — Δ(Mv)>A

(То же можно записать и по другому: полное изменение количества движения, Δ(Mv)>A + Δ(Mv), должно быть равно нулю.)

Но для тела А изменение количества движения равно

Δ(Mv)>A = (Сила, действующая на A)∙Δt,

а для тела В изменение количества движения равно

Δ(Mv) = (Сила, действующая на В)∙Δt



Физ. 203.Силы, действующие во время столкновения.

>При столкновении со стороны каждого тела, действует на другое одна сила.


Время Δt одно и то же для обоих тел, поскольку столкновение тела А с телом В не может длиться больше, чем столкновение тела В с телом Аt — это просто продолжительность столкновения обоих тел).

Следовательно, если количество движения сохраняется, то

(Сила, действующая на A)∙Δt = —(Сила, действующая на В)∙Δt,

или

(Сила, действующая на A) = —(Сила, действующая на В)∙Δt.

Таким образом, (сила, действующая на А) и (сила, действующая на В) равны и противоположны друг другу,

ДЕЙСТВИЕ РАВНО ПРОТИВОДЕЙСТВИЮ.

Существует мнение, что сохранение количества движения — это экспериментально установленный факт, и поэтому считают, что третий закон Ньютона хорошо проверен на опыте. Другие рассматривают третий закон как аксиому, своего рода предварительную формулировку способа, которым мы собираемся исследовать природу. Они предостерегают нас, заявляя, что сохранение количества движения нельзя доказать экспериментально. Можно лишь получить иллюстрацию этого принципа, поскольку те же или аналогичные эксперименты, которые берутся для вычисления Mv, мы используем для измерения масс.

Независимо от того, рассматриваем ли мы третий закон Ньютона как экспериментальный факт или основную аксиому, мы пользуемся им во всех областях физики, этот закон формирует наше мышление, не приводя к противоречиям. Сам Ньютон не провозглашал торжественное рождение третьего закона и не пытался внедрять его императивно. Он сформулировал его как рабочую гипотезу, которой собирался пользоваться, приняв ее для построения механики; однако он подверг эту гипотезу еще тщательной проверке, проводя опыты по столкновению маятников. (Прочтите описание экспериментов Ньютона, данное им самим, и обратите внимание, как остроумно он справился с сопротивлением воздуха.)

Если вы понимаете смысл третьего закона, а часто его понимают неправильно и даже неправильно излагают в учебниках, то, пожалуй, сможете пользоваться им не хуже самого Ньютона.


Мощный инструмент для решения задач

Теперь вы видите, каким мощным инструментом может служить закон сохранения количества движения при решении задач. Если в системе происходят какие-то явления, то между одной частью системы и другой ее частью могут возникать многочисленные внутренние силы, но они появляются в виде пар равных и противоположно направленных сил (третий закон Ньютона). Поэтому они не могут изменить результирующего количества движения. Мы можем проводить расчеты общего характера, не зная о внутренних деформациях и перемещениях и не заботясь о них. Когда мы делим нашу систему на две части, например при рассмотрении столкновения, и говорим, что количество движения, приобретенное одной частью, должно быть отнято у другой, нам не нужно ничего знать о силах, которыми обусловлен этот обмен количеством движения. Эти силы представляют собой пары равных и противоположно направленных сил действия и противодействия. Они являются источником равных и противоположно направленных количеств движения независимо от того, постоянны эти силы или быстро возрастают и снова убывают по величине, возникают эти силы при внезапном столкновении или в результате слабого гравитационного притяжения, приводит действие этих сил к колебаниям молекул (теплота), закручиванию пружин (потенциальная энергия) или полному восстановлению первоначальной энергии движения. Так, если пуля вылетает с большой скоростью из ружья и попадает в деревянный брусок, лежащий на абсолютно гладком столе, то скорость скольжения бруска (вместе с пулей) можно вычислить, зная массы и первоначальную скорость пули и предполагая, что количество движения сохраняется. Для расчета не нужно знать в деталях, что происходило с пулей. Как правило, пуля пробивает древесные волокна, разрывая их, в результате чего температура волокон повышается, и в конце концов вся энергия движения пули растрачивается, превращаясь в теплоту. Если пуля ударится о кусок металла, находящийся внутри деревянного бруска, то пуля нагреется сама и может расплавиться. Внутрь деревянного бруска можно поместить приспособление, которое захватывало бы пулю так, чтобы при этом энергия ее движения расходовалась на сжатие пружины или вызывала вращение небольшого колеса. В любых случаях конечная скорость бруска будет одной и той же при условии, что пуля застревает в нем.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Нелокальность

«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.