«Физический минимум» на начало XXI века - [6]
Наблюдаются, или, если быть очень осторожными, по всей вероятности, наблюдаются, черные дыры двух типов — со звездными массами меньше или порядка 100 масс Солнца и гигантские дыры в галактиках и квазарах с массами порядка (10 6– 10 9) масс Солнца. Дыры со звездными массами находят в основном в результате наблюдения двойных систем.
Вопрос об образовании галактик (проблема 26) составляет особую главу космологии. Ее содержание в теоретическом плане состоит в анализе динамики неоднородностей плотности и скорости вещества в расширяющейся Вселенной. В результате роста крупномасштабных неоднородностей вещества во Вселенной появляются галактики и скопления галактик.
Теперь остановлюсь на вопросе о темной материи. По сути дела, это очень крупное и неожиданное открытие, история которого, насколько знаю, восходит к 1933 году. Количество светящейся материи определяется в результате наблюдений в основном в видимом свете. Полное же количество гравитирующей материи сказывается на динамике — движении звезд в галактиках и галактик в скоплениях. Вне всяких сомнений, установлено, что во Вселенной имеется несветящаяся материя, проявляющаяся в силу своего гравитационного взаимодействия. Темная материя распределена отнюдь не равномерно, но присутствует везде: и в галактиках, и в межгалактическом пространстве. Так возник один из важнейших и, я бы сказал, острейших вопросов современной астрономии — какова природа темной материи, часто именовавшейся ранее также скрытой массой? Проще всего предположить, что речь идет о нейтральном водороде, сильно ионизованном (и поэтому слабо светящемся) газе, планетах, слабо светящихся звездах — коричневых карликах, нейтронных звездах или, наконец, черных дырах. Однако все эти предположения опровергаются наблюдениями разных типов.
Происхождение космических лучей (проблема 28), открытых в 1912 году, много лет оставалось загадочным. Но сейчас можно не сомневаться в том, что основными их источниками являются сверхновые звезды. Наиболее интересной представляется проблема происхождения космических лучей со сверхвысокими энергиями, превышающими 10 16 эВ. Наивысшая наблюдавшаяся в космических лучах энергия составляет 3 x 10 20 эВ. Ускорить частицы (скажем, протон) до такой энергии нелегко, но, по-видимому, возможно, особенно в активных ядрах галактик. Однако есть ряд трудностей, которые не позволяют удовлетворительно ответить на вопросы о происхождении космических лучей с самой высокой энергией. Проблема действительно загадочна и уже поэтому интересна.
Перейдем к проблеме 29 — к гамма-всплескам. В конце 60-х годов в США была запущена система спутников Вела (Vela), оснащенных приборами, могущими регистрировать мягкие гамма-лучи и предназначенные для контроля над соглашением, запрещающим атомные взрывы в атмосфере. Взрывы не производились, но были зафиксированы гамма-всплески неизвестного происхождения. Их типичные энергия (0,1–1) МэВ и длительность — секунды. Об этом открытии было сообщено лишь в 1973 году. Гамма-всплески с тех пор энергично изучались, но их природа долгое время оставалась неясной. Сейчас можно констатировать, что гамма-всплески — следствие мощнейших взрывных явлений, наблюдаемых во Вселенной, не считая, конечно, самого Большого взрыва (Big Bang). Речь идет об энерговыделении до примерно 10 51 эрг только в гамма-диапазоне. Это существенно больше, чем оптическое излучение при взрывах сверхновых. Поэтому некоторые источники гамма-всплесков называли гиперновыми. Кандидаты на роль таких «источников»: слияние двух нейтронных звезд, какое-то столкновение или слияние массивной звезды с нейтронной и т. п.
Осталось обсудить последнюю, 30-ю проблему «списка» — нейтринную физику и астрономию. Напомню, что гипотеза о существовании нейтрино была высказана Паули в 1930 году. Длительное время считалось, что детектировать нейтрино практически невозможно. Вопрос о массе нейтрино возникал, вероятно, с самого начала, но было ясно, что масса, например, электронного нейтрино если и отлична от нуля, то очень мала по сравнению с массой электрона. Так или иначе, вопрос о массе нейтрино остается актуальным.
Солнце и звезды, как известно, излучают за счет происходящих в их недрах ядерных реакций и, следовательно, должны испускать нейтрино. Такие нейтрино, имеющие энергию около 10 МэВ, могут в настоящее время регистрироваться лишь от Солнца. Еще несколько лет назад считалось, что измеряемый поток нейтрино от Солнца существенно меньше вычисленного. Но сейчас построены и начали эксплуатироваться несколько совершенных установок для детектирования солнечных нейтрино с различными энергиями. Результаты наблюдений самых последних лет позволяют утверждать, что проблема солнечных нейтрино в основном решена.
Нейтринная астрономия — это не только солнечная астрономия. Сейчас ведется мониторинг, и если нам повезет и вблизи Солнца (в Галактике или в Магеллановых Облаках) вспыхнет еще одна сверхновая, то будет получен богатый материал (сверхновые в Галактике вспыхивают в среднем примерно раз в 30 лет, но эта цифра неточна, и, главное, вспышка может произойти в любой момент). Особо нужно упомянуть задачу детектирования реликтовых нейтрино с малыми энергиями, быть может вносящими вклад в темную материю. Наконец, буквально «на выходе» находится нейтринная астрономия высоких энергий с энергиями нейтрино, превышающими 10 12 эВ. Наиболее вероятные источники: ядра галактик, слияние нейтронных звезд, космические топологические «дефекты».
Замечания в связи с энцикликой папы Иоанна Павла II «Вера и разум».Вестник Российской Академии Наук, 1999, том 69, № 6.
В статьях сборника представлены воспоминания о крупнейшем советском физике-теоретике, лауреате Нобелевской премии, академике Л. Д. Ландау (1908—1968). Воспоминаниями делятся ученики и друзья Л. Д. Ландау. Часть материалов публикуется впервые. Издание рассчитано на физиков, историков науки и широкий круг читателей.
Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.
Автор любой биографической книги всегда стоит перед проблемой отбора, тем более автор книги об Эйнштейне. Абсолютно полных биографий не существует; не претендует на это и наш труд. Мы попытались в рамках небольшой работы дать представление об этом человеке так, чтобы его образ проступил, насколько это возможно, через все то, что он сам написал; при этом большое место мы отвели его научной деятельности. Ибо наука была такой существенной частью натуры этого человека, таким стержнем всего его существа, что любая биография была бы не более чем собранием анекдотов и весьма поверхностным сочинением, если бы с легкостью прошла мимо этого.
«Впервые я узнал о нелокальности в начале 1990-х, будучи аспирантом, причем не от своего преподавателя квантовой механики: он не посчитал нужным даже упомянуть о ней. Роясь в местном книжном магазине, я наткнулся на только что изданную книжку «Сознательная вселенная» (The Conscious Universe), которая поразила меня заявлением о том, что «ни одно предыдущее открытие не бросало больший вызов нашему восприятию повседневной реальности», чем нелокальность. Это явление походило по вкусу на запретный плод…».
Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.На русском языке публикуется впервые.
Эта книга переворачивает все прежние представления о Николе Тесле! Шокирующая правда о самых засекреченных проектах славянского гения! Информационная бомба под основы современного миропорядка!Почему, будучи популярнейшим изобретателем своей эпохи, потеснившим на научном Олимпе самого Эйнштейна, Никола Тесла в то же время является самым недооцененным и запрещенным ученым XX века? Почему его революционные открытия пытаются скрыть под нагромождением мифов и псевдонаучных спекуляций, а большая часть его творческого наследия до сих пор хранится в секретных архивах американских спецслужб? Кем он был на самом деле — добрым чудотворцем, мечтавшим подарить человечеству неисчерпаемые источники энергии, или аморальным безумцем, ставившим смертельно опасные опыты не только на себе, но и на других людях, погубившим сотни жизней в ходе Филадельфийского эксперимента и вызвавшим колоссальный взрыв в Сибирской тайге, теперь известный как «падение Тунгусского метеорита»? Какие еще чудовищные открытия Николы Теслы хранятся под грифом «Совершенно секретно»? И соответствуют ли действительности слухи о неком «дьявольском оружии», изобретенном им незадолго до гибели, — то ли «лучах смерти», то ли супербомбе, способной уничтожить весь мир?