Физические тела - [14]
1 Н = 100 000 дин = 0,102 кгс.
Такое движение возникает, согласно закону Ньютона, тогда, когда в сумме на тело действует постоянная сила, подгоняющая или тормозящая тело.
Хотя и не вполне точно, такие условия возникают довольно часто: тормозится под действием примерно постоянной силы трения автомашина, идущая с выключенным мотором, падает с высоты под действием постоянной силы тяжести увесистый предмет.
Зная результирующую силу, а также массу тела, мы найдем по формуле a = F/m ускорение. Так как
a = (v — v>0)/t
где t — время движения, v — конечная, a v>0— начальная скорость, то при помощи этой формулы можно ответить на ряд вопросов такого, например, характера: через сколько времени остановится поезд, если известна сила торможения, масса поезда и начальная скорость? До какой скорости разгонится автомашина, если известна сила мотора, сила сопротивления, масса машины и время разгона?
Часто нам бывает интересно знать длину пути, пройденного телом в равномерно-ускоренном движении. Если движение равномерное, то пройденный путь находится умножением скорости движения на время движения. Если движение равномерно-ускоренное, то подсчет величины пройденного пути производится так, как если бы тело двигалось то же время t равномерно со скоростью, равной полусумме начальной и конечной скоростей:
S = >1/>2(v>0 + v)/t
Итак, при равномерно-ускоренном (или замедленном) движении путь, пройденный телом, равен произведению полусуммы начальной и конечной скоростей на время движения. Такой же путь был бы пройден за to же время при равномерном движении со скоростью >1/>2(v>0 + v). В этом смысле про >1/>2(v>0 + v) можно сказать, что это средняя скорость равномерно-ускоренного движения.
Полезно составить формулу, которая показывала бы зависимость пройденного пути от ускорения. Подставляя v = v>0 +at в последнюю формулу, находим:
S = v>0t + a∙t>2/2,
или, если движение происходит без начальной скорости,
S = a∙t>2/2
Если за одну секунду тело прошло 5 м, то за две секунды оно пройдет (4 x 5) м, за три секунды — (9 x 5)м и т. д. Пройденный путь возрастает пропорционально квадрату времени.
По этому закону падает с высоты тяжелое тело. Ускорение при свободном падении равно g, и формула приобретает такой вид:
S = (981/2)∙t>2
если t подставить в секундах, a g в сантиметрах на секунду в квадрате.
Если бы тело могло падать без помех каких-нибудь 100 с, то оно прошло бы с начала падения громадный путь — около 50 км. При этом за первые 10 с будет пройдено всего лишь 0,5 км — вот что значит ускоренное движение.
Но какую же скорость разовьет тело при падении с заданной высоты? Для ответа на этот вопрос нам понадобятся формулы, связывающие пройденный путь с ускорением и скоростью. Подставляя в S = >1/>2(v>0 + v)/t значение времени движения t = (v — v>0)/a получим:
S = (1/2a)∙(v>2 — v>0>2),
или, если начальная скорость равна нулю,
S = v>2/2a, v = √(2aS)
Десять метров — это высота небольшого двух- или трехэтажного дома. Почему опасно прыгнуть на Землю с крыши такого дома? Простой расчет показывает, что скорость свободного падения достигнет значения v = √(2∙9,8∙10) м/с = 14 м/с ~= 50 км/ч, а ведь это городская скорость автомашины.
Сопротивление воздуха не намного уменьшит эту скорость.
Выведенные нами формулы применяются для самых различных расчетов. Применим их, чтобы посмотреть, как происходит движение на Лупе.
В романе Уэллса «Первые люди на Луне» рассказывается о неожиданностях, испытанных путешественниками в их фантастических прогулках. На Луне ускорение тяжести примерно в 6 раз меньше земного. Если на Земле падающее тело проходит за первую секунду 5 м, то на Луне оно «проплывет» вниз всего лишь 80 см (ускорение равно примерно 1,6 м/с>2).
Написанные формулы позволяют быстро подсчитать лунные «чудеса».
Прыжок с высоты h длится время t = √(2h/g). Так как лунное ускорение в 6 раз меньше земного, то на Луне для прыжка понадобится в √6 ~= 2,45 раз больше времени. Во сколько же раз уменьшается конечная скорость прыжка (v = √(2g∙h))?
На Луне можно безопасно прыгнуть с крыши трехэтажного дома. В шесть раз возрастает высота прыжка, сделанного с той же начальной скоростью (формула h = v>2/2g). Прыжок, превышающий земной рекорд, будет под силу ребенку.
Задача бросить предмет как можно дальше решается человеком с незапамятных времен. Камень, брошенный рукой или выпущенный из рогатки, стрела, вылетевшая из лука, ружейная пуля, артиллерийский снаряд, баллистическая ракета — вот краткий перечень успехов в этой области.
Брошенный предмет движется по кривой линии, называемой параболой. Ее можно построить без труда, если движение брошенного тела рассматривать как сумму двух движений — по горизонтали и по вертикали, происходящих одновременно и независимо. Ускорение свободного падения вертикально, поэтому летящая пуля движется по горизонтали по инерции с постоянной скоростью и одновременно по вертикали с постоянным ускорением падает на Землю. Как же сложить эти два движения?
Начнем с простого случая — начальная скорость горизонтальна (скажем, речь идет о выстреле из ружья, ствол которого горизонтален).
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
В книге описана одна из тенденций развития систем: способы «управления» гравитационным полем и тенденции использования гравитации.
Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.
Перед вами история невероятной дружбы между двумя великими физиками, изменившими понятия времени и истории, Ричардом Фейнманом и Джоном Уилером. Несмотря на различия этих двух личностей, их дружба выдержала испытания временем и способствовала чрезвычайно успешному сотрудничеству, приведшему в итоге к полному переосмыслению природы времени и реальности.
Автор любой биографической книги всегда стоит перед проблемой отбора, тем более автор книги об Эйнштейне. Абсолютно полных биографий не существует; не претендует на это и наш труд. Мы попытались в рамках небольшой работы дать представление об этом человеке так, чтобы его образ проступил, насколько это возможно, через все то, что он сам написал; при этом большое место мы отвели его научной деятельности. Ибо наука была такой существенной частью натуры этого человека, таким стержнем всего его существа, что любая биография была бы не более чем собранием анекдотов и весьма поверхностным сочинением, если бы с легкостью прошла мимо этого.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.