Физические начала архитектурных форм - [10]

Шрифт
Интервал

Ярче и убедительнее пример деформации даёт гранитная база портика академии наук. Случайно, благодаря расположению швов и осадке камней цоколя, эта база оказалась подпёртою в крайних точках и вот её прогиб довольно заметен даже на рисунке: плита её как бы вдавлена.

Но особенно наглядна деформация могильных памятников в Александро-Невской лавре. Большинство памятников начала XIX столетия выложено из известняка и облицовано мраморными досками. У памятников, где эти доски подвержены нагрузке, они слегка выпучены. Рассмотрим один из таких памятников (1822 г.), где эта выпученность наиболее заметна. Имеется просвет между кладкой и изогнувшейся мраморной доской, тогда как концы досок сходятся в совершенно правильный "ус".

Хотя Москва и древнее Петербурга, но, благодаря тому, что московские постройки в большинстве из кирпича, там трудно указать настолько доказательные примеры. Я уже упоминал про сильный наклон осей колонн Набатной башни, просвешивающееся ребро параболической полуарки там же; кроме этого можно указать на некоторое косвенное обстоятельство: колонны этой башни сложены из "точков", причём число точков во всех рядах почти одинаково, как в самом широком так и в самом узком месте. Разность же между окружностями выпуклости и шейки довольно значительная.

Более доказательно образование эллиптической формы верхней арки из полуциркульной, во-первых, по её ответу внутренней направляющей, оставшейся благодаря связям именно полуциркульной, а во-вторых потому, что её пяты понадобилось реставрировать. Странна также эта выпуклость нижних рядов кирпичей в колоннах, постепенно уменьшающаяся кверху. Этого нельзя объяснить выветриванием, так как выветриваясь кирпич принимает другую форму, а именно средина его делается вдавленной; кроме того, выветривание началось бы скорее с верхней поверхности выпуклости колонны,

a не с более защищённой от дождя и ветра нижней.

Псмотрим на схематическое изображение колокольни Ивана Великого; конечно, трудно предположить, чтобы это постепенное уменьшение уклонов стен по этажам было сделано при постройке, тем более,что постройка была спешная: другие памятники не представляют подобного утонения, но нельзя и доказать обратного. Можно указать лишь на довольно сильный наклон оси самой колокольни к горизонту. Так как наклоняющий момент увеличивается всё быстрее, то, вероятно, мы в недалёком будущем будем иметь свою Пизанскую башню на некоторое время, пока эта колокольня не свалится совсем.

Интересны, хотя мало заметны в натуре, деформации верхушек некоторых кремлёвских башен: если мы проведём касательные к верху и к низу их пирамидальной верхушки, то эти касательные дают некоторый угол с общим наклоном рёбер или граней. В храме Спасителя вертикальные линии углов здания не строго вертикальны, т.е. не параллельны между собою. Каменные платформы, на которых стоят пушки в Кремле, очень сильно накренились и пушки грозят скатиться на мостовую.

Конечно, можно было бы и ещё много привести примеров и в Москве, и в Петербурге, но так как большинство наших зданий выстроено из кирпича, то в большинстве эти изменения форм сравнительно мало убедительны: всегда является подозрение в небрежности кладки, в плохом качестве кирпича и т.п. Если деформация арки, сделанной из гранита, достаточно заметна благодаря отчётливости её обделки, большим размерам камней и большей ясности направления швов, то деформация арки, сложенной из кирпича, уже менее заметна, менее доказательна. Однако же следует полагать, что при кирпиче она должна быть ещё больше.

Заметной вполне и вполне ясной деформация кирпичных сооружений становится только в больших масштабах. Такова, например, стена Кремля в Нижнем Новгороде, спускающаяся по косогору вниз. Несмотря на то; что в ней нигде нет трещин, её как горизонтальные, так и вертикальные линии — швы кладки и углы устоев, очень заметно отклонились, приближаясь к направлению уклона косогора.

Интересную деформацию можно также отметить в подпружных арках церкви Иоанна Предтечи в Ярославле. Из чертежа видно, что в одном случае разорвавшаяся связь дала возможность работать кривой давления, но выходящей из средней трети замка, и потому там не появилось трещины, между тем как присутствие неразорванной связи в другом, совершенно тожественном по условиям случае обусловило повышение кривой давления, что и дало трещину.

Конечно, везде, во всяком городе, внимательный наблюдатель найдёт следы этой работы времени, но везде ездить и указывать их значило бы то же, что проверять, везде ли есть на земле воздух или сила тяжести. Несомненно, если мрамор, гранит, кирпич, штукатурка способны изменять свою форму, не давая трещин, то они будут изменять её везде, где только есть соответствующие условия, т.е. сила тяготения.

Убеждённый вполне этими наблюдениями в том, что хроническая деформация далеко не столь незаметный фактор, чтобы с ним не нужно было считаться, я приступил к разрешению второго, поставленного мною вопроса, а именно: к изучению величины и характера этой деформации на специально поставленных с этой целью опытах.


Еще от автора Борис Николаев
300 полезных советов по домоводству

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 02

Популярный детский и юношеский журнал.


Юный техник, 2014 № 09

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 02 (9)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.