Философы Древней Греции - [86]
6 Очень ясно сформулированную оценку фундаментальной математики и ее открытия Пифагором см. в книге W h i t e h e a d A.N. Science and the Modern World. Работа Нойгебауэра (см. выше, глава I, пункт 7) немного изменяет наше мнение, что греки создали математику из ничего, но точка зрения Клэджетта и Самбурского, хотя эти двое должным образом учитывают новые открытия, как мне кажется, в основном совпадает с позицией Уайтхеда.
7 Heath Т. History (Т. Хит). См. также его издание «Элементов» Евклида в 3 томах. Во времена Платона уже существовали книги об «элементах геометрии», и Хит считает методы доказательства теорем I–V Евклида строго пифагорейскими. В этой и последующих главах греки показаны больше сделавшими для разработки формальной логики и больше ценившими аксиомо-дедуктивный метод формулирования доказательств, чем считали многие историки. Доводы против точки зрения, что до Аристотеля «логика» была примитивной и аморфной, как еще считают некоторые выдающиеся ученые нашего времени, см. в: S p r a g u e K.K. Plato's Use of Fallacy (К. Спрэг) и в моем кратком изложении аргументации Платона из его «Парменида» (Plato on the One).
8 Хотя пифагорейцы сознательно отрицали существование каких-либо четких границ между фундаментальной математикой, прикладной математикой, физикой и философией, они также иногда создавали достаточно впечатляющие и строго гипотетически-дедуктивные доказательства. Хорошим примером этого может служить сохраненное для потомства в общих чертах Аристотелем косвенное доказательство того, что квадратный корень из двух является иррациональным числом.
См. книгу H e a t h Т. Mathematics in Aristotle и History of Greek Mathematics I.
9 В современной формальной логике реальность абстрактных сущностей остается темой для споров (центром которых часто становится профессиональный терминологический вопрос о том, имеет ли по-настоящему смысл оперировать терминами «существования» («существует такой__ __, что__ _»), подставляя на места, отмеченные здесь чертой, названия абстрактных свойств или классов. См.: Quine W.V. Mathematical Logic (В. Квин) и Korner S. The Philosophy of Mathematics (С. Кернер).
10 Например, есть сведения о том, что в начальный период существования школы Пифагора пифагорейцы связывали геометрические формы известных им «правильных тел» со свойствами земли, огня и воды. Эта геометрическая молекулярная теория гораздо позже получила полное развитие у Платона. Но и мысль, что природа предпочитает симметрию, и мысль, что такие качественные различия, как те, которые существуют между землей и огнем, возможно, объясняются различием в форме частиц, – обе эти мысли могли возникнуть еще во времена самого Пифагора и иметь какое-то экспериментальное подтверждение. Ridgeway W. (У. Риджуэй) в статье What Led
Pythagoras to the Doctrine that the World was Built of Numbers? сопоставил свидетельства древних о том, что Пифагор сам был резчиком по драгоценным камням, и тот факт, что некоторые хорошо известные людям кристаллы по своей геометрической форме – правильные тела, и предположил, что форма этих кристаллов могла подсказать Пифагору его математический взгляд на природу. Конечно, это не может быть единственным и достаточным объяснением идей Пифагора, но связь между ними и формами кристаллов кажется вполне вероятной. Риджуэй упоминает о пирамидах и двойных пирамидах кварца, кубиках железного колчедана и свинцового блеска, двенадцатигранных кристаллах граната и шестигранных цилиндрических кристаллах берилла. Предположение, что эти случаи симметрии в природе были известны пифагорейцам и, возможно, повлияли на их взгляды, становится, по-моему, еще правдоподобнее, если вспомнить, что в число инструментов резчика по драгоценным камням могли входить увеличительные линзы из кристаллов.
11 Арифметика в том ее понимании, которое существовало в эллинистическую эпоху и в Средние века, находилась еще очень близко от этого пифагорейского подхода к числам; ср.: N i c o m a c h u s. Introduction to Arithmetics (Никомахус). Сложность оценки, которую Аристотель дает пифагорейской арифметике, не в том, что Аристотель плохо разбирался в математике (в случае необходимости он проявлял себя достаточно компетентным в этой области). Дело в другом: Аристотель, считавший, что математика должна быть только совокупностью технических приемов, применял эту свою точку зрения к более ранней эпохе, когда эту науку представляли себе совершенно иначе. Об этом см.: B г u m b a u g h R.S. Plato's Mathematical Imagination (Р. Брамбо).
12 Об этом представлении, что числа могут иметь качественные признаки, см.: Freeman. Companion. Даже сейчас, когда мы привыкли думать о числах просто как о знаках, которыми удобно пользоваться, когда выполняешь вычисления, некоторые поэты (и не только поэты) обладают «пифагорейской синестезией» – способностью ассоциировать некоторые качества с теми или иными числами (обычно эти ассоциации одинаковы у разных людей). Но этот подход быстро привел к экстравагантной «магии чисел», которая сродни скорее литературе, чем науке; тому, кто хочет увидеть пример этой магии, советую прочесть компиляцию из работ неопифагорейцев и неоплатоников в книге: T a y l o r T.
Из предисловия:Необходимость в книге, в которой давалось бы систематическое изложение исторического материализма, давно назрела. Такая книга нужна студентам и преподавателям высших учебных заведении, а также многочисленным кадрам советской интеллигенции, самостоятельно изучающим основы марксистско-ленинской философской науки.Предлагаемая читателю книга, написанная авторским коллективом Института философии Академии наук СССР, представляет собой попытку дать более или менее полное изложение основ исторического материализма.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.
Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.
Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.
Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.