Философы Древней Греции - [25]
ПАРАДОКС ЗЕНОНА «СТАДИОН»
AAA находится в покое, BBB движется от знака поворота, а CCC движется к знаку поворота с той же скоростью. Если мы примем «время проезда расстояния, равного одной длине колесницы», за единицу времени и измерим его по движению B относительно A, то B проедет мимо C за половину этого времени. Это противоречит представлению о том, что исходная выбранная единица времени была неделимой. Этот аргумент можно применить, чтобы показать, что не может быть наименьшего неделимого отрезка времени.
Хотя современному читателю ясно, что Зенон действительно обнаружил важную истину, наш здравый смысл XX века настолько привык к тому, что скорость относительна, что эта четвертая задача для нас менее интересна, чем остальные три. Однако, если мы посмотрим на эти парадоксы как на критические выпады против «научных» идей о движении, которые излагали прифагорейцы, мы обнаружим, что в этом последнем из четырех парадоксов Зенон спрятал еще одну задачу.
В то время, когда жили Зенон и Парменид, пифагорейцы были в западном мире экспертами по естественным наукам и математике. Выполняют ли четыре парадокса Зенона свою функцию критики распространенных тогда более точных определений пространства, времени и движения?
Пифагорейцы, похоже, пришли к соглашению, что физический мир, включая пространство и время, складывается из отдельных «точек» и «моментов». Поэтому они определили бы движение примерно так, как мы определяем скорость, – как перемещение через определенное количество точек пространства за определенное количество моментов времени. В физике и геометрии пифагорейцы также единогласно признавали положение, что любой непрерывный объект, имеющий длину, – например, линия или ее часть – может быть разделен на две части. Но помимо этого согласованного общего мнения не было ни одного принятого всей их школой взгляда на то, каков размер моментов и точек: они могли не иметь вообще никакого размера или могли иметь соответственно конечную длину и конечную длительность. Не было согласованного единого мнения и на то, следует ли рассматривать линию, определяемую точками, как ряд точек, расположенных одна вплотную к другой, или считать, что точки на линии отмечают границы интервалов, а промежутки между точками заняты какой-то разновидностью пустоты или пространства>3.
Отсутствие согласия по поводу конкретных деталей означало, что Зенон должен был рассмотреть четыре возможных случая, чтобы показать, что ни одно точное описание не может быть свободно от противоречий. Похоже, он чувствовал, что Парменид уже доказал нелепость попыток заполнить промежутки между точками каким-то видом пустоты>4. Такая пустота была бы формой небытия, а поскольку ничто не может что-то делать и не может иметь какие-то свойства, было бы нелогичным считать, что оно разделяет точки или связывает их. Поэтому не вызывают возражений с точки зрения логики только те варианты, в которых сегменты пространства (и времени) вплотную прилегают один к другому.
Четыре возможных у пифагорейцев способа описать движение объединяются в две группы: либо (1) сегменты пространства и части времени не похожи друг на друга, либо (2) они похожи. Если (1) они не похожи, то либо (1a) каждый момент времени имеет определенную протяженность, а сегменты пространства ее не имеют, либо (1b) дело обстоит наоборот: точки имеют конечную длину, а моменты времени не имеют длительности. Если (2) время и пространство подобны одно другому, то либо (2a) элементы и того и другого не имеют никакой протяженности, либо (2b) элементы и того и другого имеют какую-то минимальную конечную длину [то есть либо T = 1, S = 1, либо T = 0, S = 0]>5.
Именно эти четыре возможности и рассмотрены по порядку в четырех парадоксах движения. Зримо представить это в компактной форме вам может помочь таблица:
Для начала вернемся к задаче «Деление на два» и обратим внимание на то, что в этой головоломке предполагается, что пространство между вами и ведущей наружу дверью можно делить бесконечно. И для Зенона, и для Пифагора это означало, что пространственные точки не имеют длины. В то же время, когда Зенон сказал: «Чтобы пройти через каждую точку пространства, нужно какое-то время», он предполагал, что у моментов времени есть какая-то «длина» и поэтому, если сложить бесконечное количество моментов, в сумме получится бесконечное время. Это противоречие происходит оттого, что к пространству применяется пифагорейский постулат о том, что любое непрерывное количество можно разделить на две части, а к времени применяется другая пифагорейская теорема, что непрерывное количество представляет собой последовательность бесконечного числа отдельных точек. (С точки зрения арифметики раз пространственные точки не имеют длины и поэтому их длина равна нулю, то при их сложении не может получиться длина больше нуля. Но поскольку моменты времени имеют длительность, сумма любого количества этих моментов будет больше, чем нуль. Если теперь описать движение как отношение расстояния к времени s/t, получится 0/t, то есть неподвижность.)
В парадоксе об Ахилле делается противоположное допущение. Когда Зенон заявляет, что Ахилл
Из предисловия:Необходимость в книге, в которой давалось бы систематическое изложение исторического материализма, давно назрела. Такая книга нужна студентам и преподавателям высших учебных заведении, а также многочисленным кадрам советской интеллигенции, самостоятельно изучающим основы марксистско-ленинской философской науки.Предлагаемая читателю книга, написанная авторским коллективом Института философии Академии наук СССР, представляет собой попытку дать более или менее полное изложение основ исторического материализма.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.
Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.
Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.
Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.