Фабрика планет. Экзопланеты и поиски второй Земли - [7]
Уникальность углистого хондрита в его древнем происхождении: когда вы держите его в руках, вы как будто смотрите на детскую фотографию самого дальнего предка. Эта горная порода сформировалась в самом начале истории нашей планеты. Но, в отличие от Земли, ей не удалось набрать достаточную массу для того, чтобы вырасти в самостоятельную планету. С помощью этого снимка, на котором в физической форме запечатлено самое начало нашего собственного существования, мы можем с большой точностью определить момент рождения нашего планетного окружения.
Как показывает лабораторный анализ, в метеоритах содержатся элементы, которые являются радиоактивными: атомы в них могут спонтанно превращаться в атомы другого элемента. Этот радиоактивный распад носит случайный характер, а значит, точно сказать, когда конкретный атом изменит свое состояние, невозможно. Однако есть значительное число атомов, изучая которые ученые могут с определенной долей уверенности определить время, которое требуется для того, чтобы половина из них распалась. Этот отрезок времени называют периодом полураспада элемента. То есть, если мы сможем узнать, какая часть радиоактивного элемента распалась, мы получим своего рода часы, с помощью которых мы сможем рассчитать, сколько времени прошло.
Одним из таких радиоактивных элементов, содержащихся в метеоритах, является рубидий-87 (обозначаемый как >87Rb). Цифра 87 указывает на массу атомного ядра рубидия — центральной его части, состоящей из положительно заряженных частиц под названием «протоны» и частиц под названием «нейтроны», которые имеют ту же массу, что и протоны, но при этом не обладают электрическим зарядом. Когда атом >87Rb распадается, один из его нейтронов становится протоном в ходе процесса, получившего название бета-распад. Результатом является атом стронция-87 (>87Sr), ядро которого имеет ту же массу, что и >87Rb, но при этом в нем на один протон больше и на один нейтрон меньше.
Период, за который половина атомов >87Rb распадается в >87Sr, составляет 49,23 млрд лет. Он отлично подходит для оценки временных рамок образования планет. Если бы период полураспада был очень коротким (скажем, несколько лет), тогда атомы >87Rb исчезли бы задолго до того момента, когда изучаемый осколок горной породы достиг поверхности Земли. С другой стороны, существенно большая продолжительность этого отрезка времени означала бы отсутствие такого количества атомов >87Sr, которого было бы достаточно для проведения измерений. Поэтому достаточного уровня точности измерений методом радиоактивного датирования можно достичь в тех случаях, когда измеряемый период времени находится в промежутке от одной десятой периода полураспада до 10 периодов полураспада.
Измеряя текущее количество атомов >87Rb в метеорите и количество атомов >87Sr, образовавшихся в результате распада рубидия, ученые могут рассчитать, какая часть атомов распалась с момента формирования метеорита. Затем, зная период полураспада >87Rb, они могут определить, сколько времени прошло с момента образования горной породы.
В случае с углистым хондритом, таким, например, как метеорит Альенде, полученный описанным способом возраст указывает на самое начало истории нашей планеты. Он равен 4 560 000 000 годам.
Планетообразующий диск
Благодаря метеориту Альенде мы знаем, когда зародилась наша планета. Но что именно тогда она из себя представляла, остается для нас загадкой. Углистый хондрит вряд ли можно сравнить с четкой фамильной фотографией, на которой видны лица всех предков. Скорее он похож на размытое селфи дальнего кузена с датой в виде наспех нацарапанных закорючек в нижнем углу. Не имея более четкого представления об условиях, в которых началось формирование нашей планеты, мы не сможем понять, есть ли у нас шанс найти второй такой мир.
И пусть с семейным фотографом нам не повезло, у нас все же есть один достоверный факт об эпохе, когда мы родились: 4,56 млрд лет назад наше Солнце появилось на свет. Оказывается, связи всего лишь с одним-единственным событием — завершившимся незадолго до того формированием нашей звезды — достаточно, чтобы понять, как образуется планета.
Если мы углубимся в прошлое еще на несколько миллионов лет, взяв за точку отсчета момент образования первобытного метеорита, мы окажемся в одном из самых холодных мест в Галактике. Место это — колыбель нашего Солнца: умопомрачительно холодное облако газа с температурой –263 °C. Именно в таких звездных колыбелях и зарождаются все звезды в нашей Галактике. Эти облака состоят преимущественно из водорода, а их массы приблизительно в 1000–1 000 000 раз превышают массу Солнца. Поскольку они образуются в Галактике, которая находится в постоянном движении, газ в облаках распределяется не равномерно, а постоянно перемещается и перемешивается, как пух в старой перине, собираясь в плотные сгустки, называемые ядрами. В результате концентрации большой массы в небольшом пространстве под действием гравитации ядро начинает сжиматься, что делает его еще более плотным и ускоряет его коллапс. По мере уплотнения газ нагревается и рождается звездный эмбрион — протозвезда.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.