Эйнштейн. Теория относительности. Пространство – это вопрос времени - [6]
Результат этого опыта пробудил любопытство в Андре Мари Ампере (1775-1836), который выяснил, что электрические токи также могут взаимодействовать, притягиваться и отталкиваться благодаря силам магнетической природы. Как и Кулон, к своим открытиям Ампер пришел с помощью математических уравнений, в которых связывал величины, доступные для наблюдения в любой лаборатории.
На первый взгляд эти законы не предполагали никаких особо сложных теоретических построений. Ученые-физики, исследуя окружающий их универсум, со временем собрали небольшое количество принципов и идей, которых, казалось, было вполне достаточно для того, чтобы представить полную, точную и логичную картину мира. С одной стороны, существовали точечные частицы, которые взаимодействовали между собой при помощи центральных сил, то есть сил, направленных вдоль прямой линии, соединяющей точечные массы. Такое взаимодействие происходило мгновенно и на расстоянии. С другой стороны, существовали волны, которые распространялись в материальной среде, состоящей из частиц, взаимодействующих между собой.
Как мы видим, ученые, анализируя реальность, опирались на образы, взятые из повседневной жизни: камень, брошенный в пруд (частица), и круги, появляющиеся от него на поверхности (волны). Однако, как бы ни были знакомы человеческому воображению эти волны и частицы, сама идея мгновенного действия на расстоянии была довольно странной. «Вне физики,- говорил Эйнштейн, – наш разум не знает никаких сил, которые оказывали бы действие на расстоянии». Похожую критику уже вызывала ньютоновская формулировка закона тяготения, которая описывала с математической точностью все эффекты, но умалчивала об их причине. Ответ самого Ньютона на подобные упреки известен: «Hypotheses non jingo» – «Я не выдумываю гипотез».
Восхищение, которого заслуживал труд Ньютона, не могло заслонить собой некоторую неловкость перед вытекающими из него выводами. Следуя логике рассуждений ученого, оказывается, что мы могли бы отправлять мгновенные послания на другой конец планеты, придав движение некой массе: ее движение изменило бы расстояние между ней и нами, а вместе с этим и силу, действующую на любое тело на Земле. Аппарат с достаточной чувствительностью должен был бы уловить это воздействие, а разные изменения силы можно было бы организовать по принципу языка Морзе.
Теория центральных сил начала давать трещины, когда опыты показали, что электромагнитные взаимодействия зависят не только от расстояния, но также от скорости и ускорения. Если заряды находились в состоянии покоя, классическая схема работала отлично, но как только они начинали двигаться, величины в уравнениях умножались, а вектора силы отклонялись от прямой, соединяющей частицы (см. рисунок).
Вектора сил между двумя зарядами, в статическом положении (слева) и в динамике (справа). В первом случае вектор силы по отношению к каждому из зарядов совпадает с вектором соединяющей их прямой (Felect). Когда заряды приобретают скорость (v4 и v2 ), появляется магнитная сила (Fmag), перпендикулярная вектору скорости. Равнодействующая сила (Ftotal), действующая на каждый из зарядов, то есть сумма электрической и магнитной сил, не совпадает по своему вектору с прямой линией, соединяющей оба заряда.
Постепенно стало ясно, что существующая система понятий терпит фиаско и не способна описать только что открытые законы. Было необходимо найти новые инструменты. Английский ученый Майкл Фарадей (1791-1867) первым сумел увидеть невероятную экспериментальную картину, созданную Кулоном, Ампером и Эрстедом, с подходящего угла зрения.
Фарадей был выдающимся человеком во многих смыслах. Он вырос в такой бедности, которая не позволяет мечтать ни о каких научных достижениях. Тем не менее, работая переплетчиком, юноша выучился химии и физике – он просто читал все те книги, которые попадали ему в руки.
Сегодня более 99% электроэнергии в мире производится на атомных, тепловых, водных, ветровых, приливных и других электростанциях. Все они работают на базе генераторов тока, в основе которых лежит электромагнитная индукция – явление, открытое и описанное Фарадеем. 17 октября 1831 года он сделал в своем дневнике запись о том, что если рядом с проводом поместить магнит, то в проводе появится электрический ток. Это открытие замыкало круг, начатый Эрстедом: когда-то в Дании электрический ток заставил двигаться намагниченную стрелку компаса, а теперь в подвале Королевского института Великобритании, где ставил свои опыты Фарадей, движение магнита порождало электрический ток.
Тот же Фарадей подобрал ключ к закрытому замку современной теоретической физики – им стало понятие поля. Его можно ясно себе представить, если посмотреть на рисунок, который образуют железные стружки вокруг полюсов магнита или вблизи электрического тока. Однако этот простой эксперимент влечет целую вереницу вопросов. Какой силе подчиняются металлические стружки? На что ориентированы так называемые силовые линии, по формулировке Фарадея – завихрения вокруг зарядов и полюсов магнита?
Эти нечеткие фигуры навсегда изгнали из научного обихода ньютоновское понятие центральных сил. Эйнштейн пытался восстановить ход мысли Фарадея:
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.
Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.