Эйнштейн. Теория относительности. Пространство – это вопрос времени - [18]

Шрифт
Интервал

Эти эффекты компенсируют друг друга: медленно летящий мяч преодолевает более короткое расстояние, а быстрый – более длинное. В результате оба долетают каждый до своей стены одновременно. Если наблюдатели A, В и С соберутся вместе и сравнят свои замеры времени, получится, что разности t>2 – t>0 и t>1 – t>0 равны между собой. События происходят одновременно.


Электромагнитный эксперимент

Заменим метательную машину и мячи фонарем с двумя лампочками. При включении он посылает два световых луча (электромагнитное излучение): один направо, другой налево.


РИС. 9


РИС. 10


Версия наблюдателей, находящихся в корабельном трюме

По сути, эксперимент очень похож на предыдущий, как и его результат: мы снова получаем равенство t'>2 – t'>0 = t'>1 – t'>0.

Версия наблюдателей на причале

В предыдущем случае, как мы помним, из-за движения корабля мячи двигались по-разному, но в этом случае константа скорости света не позволит возникнуть эффекту компенсации. Наблюдатели, находящиеся на причале, придут к выводу, что лучи света i и d одинаково быстры (рисунок 9). Но стены по-прежнему будут вести себя по-разному: одна будет приближаться к лучу i, а другая – отдаляться от луча d. Поэтому луч i придет к цели раньше, чем луч d (рисунок 10). События встречи луча света со стеной в системе отсчета G не одновременны!


О сжатии объектов в пространстве

Продолжим изучать следствия того факта, что скорость света постоянна, в рамках интересующего нас принципа относительности. Допустим, что два наблюдателя, G и D присутствуют при одних и тех же событиях, но видят их с разных точек. Мы попросим их сделать один дистанционный замер.


Механический эксперимент

Два наблюдателя, А’ и В’, располагаются в углах корабельного трюма, глядя в направлении положительного луча оси у' На левой стене закреплен автоматический метатель, который выстреливает мяч со скоростью v. Физический феномен (в этом случае механический), который мы здесь рассмотрим, заключается в метании и остановке мяча, и этим методом мы воспользуемся для того, чтобы измерить трюм корабля. Его длина будет равна дистанции, которую пролетит мяч с момента выстрела до момента своей остановки о противоположную (правую) стену трюма.


РИС. 11


РИС. 12


Версия наблюдателей, находящихся в корабельном трюме

А’ и В’ считают, что находятся в состоянии покоя. А’ засекает на своем хронометре время выстрела мяча (t’1) (рисунок 11). Когда мяч ударяется о стену, В’ отмечает момент времени на своем секундомере (t'>2) (рисунок 12).

Зная скорость v и время t' и t'>1 в системе отсчета D можно сделать вывод о расстоянии, пройденном мячом, умножив скорость на период времени. В этом случае:

L'=v•(t'>2 -t'>1).


Версия наблюдателей на причале

Нам снова понадобится целый ряд наблюдателей, стоящих вдоль причала, – каждый с хронометром. Пусть А – наблюдатель, который находится напротив метательной машины в момент выстрела. Он отметит на своем хронометре момент вылета мяча из машины (t>1) (рисунок 13). В – тот, кто будет находиться напротив мяча, когда тот ударится о стену. В момент удара он отметит время t>2 (рисунок 14).


РИС. 13


РИС. 14


Наблюдатели считают, что скорость мяча внутри метательной машины уже равна скорости движения корабля и. После выстрела правая стена смещается, отдаляясь от мяча со скоростью u потому мяч должен пройти большую дистанцию. Поэтому несмотря на то, что наблюдатели системы G отметят то же время, что и наблюдатели системы D пройденное расстояние и скорость мяча для них будут разными:

L+u•(t>2-t>1) где u•(t>2-t>1) расстояние, на которое отодвигается правая стена в то время, пока мяч находится в воздухе.

Если мы отвлечемся от существования корабля и будем заниматься только мячом, то увидим, что со скоростью v + u он за период времени t>2 – t>1 пролетит расстояние

(v + u)•(t>2- t>1).

Обе величины должны быть равны между собой:

L + u • (t>2 – t>1) = (v + u) • (t>2 – t>1).

Получим знакомое уравнение для вычисления длины трюма:

L = v•(t>2- t>1).

Можно сделать вывод о том, что с точки зрения наблюдателей на причале мяч должен пройти большее расстояние, поскольку стена от него отдаляется, но при этом он летит с большей скоростью, так как к его скорости прибавляется скорость корабля, поэтому оба эффекта компенсируют друг друга.


Электромагнитный эксперимент

Заменим метательную машину фонарем, а мяч – лучом света (и опять мы имеем дело с электромагнитным излучением).

Единственный элемент, общий для систем G и D – величина скорости света. Все хронометры, участвующие в эксперименте, произведены на одной фабрике, но только два из них в одной и той же системе отсчета показывают одно и то же время. Для того чтобы перевести пространственные или временные координаты из одной системы в другую, необходимо прибегнуть к преобразованиям Лоренца.

Версия наблюдателей находящихся в трюме корабля

Как и в механическом эксперименте, А’ отмечает тот момент, когда световой луч выходит из фонаря, а В’ – момент, когда луч достигает противоположной стены (рисунок 15). Для них:

L’ = c-(t'>2 -t'>1).

Версия наблюдателей на причале

С причала наблюдатели видят, как отдаляется правая стена, световой луч при этом по-прежнему движется со скоростью с (рисунок 16). Они замечают, что прежде чем достичь стены, луч преодолел не только длину трюма, но и дистанцию, пройденную кораблем в период времени между t


Еще от автора Давид Бланко Ласерна
На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.