Эволюция Вселенной и происхождение жизни - [89]

Шрифт
Интервал

Рис. 19.5. Импульсы от пульсара PSR В0329 по наблюдениям радиотелескопа обсерватории в Нансэ, во Франции (см. рис. 1 на цветной вкладке). Интервал между импульсами составляет ровно 0,714 с.

Прежде чем эти результаты в начале 1968 года были опубликованы в журнале Nature, Хьюиш провел в Кембридже семинар, на котором предположил, что сигналы идут от белых карликов. Сидевший в зале Фред Хойл, руководивший Институтом теоретической астрономии, заметил: «Я не верю, что это белые карлики. Я думаю, что это остатки сверхновых». Никто другой не смог сделать столь правильный вывод всего за несколько минут мысленного анализа данных.

Таблица 19.3. Сравнение характеристик Солнца и белых карликов.

Что же такое на самом деле эти белые карлики, сверхновые звезды и остатки сверхновых, о которых говорил Хойл? В начале XX века астрономические наблюдения начали свидетельствовать, что существуют фантастически плотные звезды размером примерно с Землю, но с массой как у Солнца. К примеру — спутник Сириуса, называемый Сириусом В (табл. 19.3). Плотность таких звезд примерно в миллион раз выше плотности обычного камня. Артур Эддингтон вспоминал, как реагировала на это научная общественность: «Сообщение спутника Сириуса после его расшифровки гласило: «Я состою из вещества, плотность которого в 3000 раз выше, чем у всего, с чем вам когда-либо приходилось иметь дело; тонна моего вещества так мала, что поместится в спичечном коробке». Что можно сказать в ответ на такое послание? В 1914 году большинство из нас ответило так: «Полно! Не болтайте вздор!»

Вплоть до 1926 года так никто и не понял, что послание Сириуса не было вздором. Американец Ральф Фаулер применил недавно открытый принцип запрета Паули к электронному газу в белых карликах. В чрезвычайно плотном газе белых карликов электронам не хватает места для обращения вокруг атомных ядер, и они сами образуют газ. Белый карлик похож на огромный атом, покрытый облаком из бесконечного числа электронов. К электронам этого облака можно применять принцип Паули точно так же, как и к электронам обычных атомов. Электроны не могут занять состояние, которое совпадает с состоянием любого другого электрона в этом облаке. Когда звезда остывает, все электроны не могут замедлиться, поскольку нет достаточного числа состояний, соответствующих медленному движению. Некоторые электроны обязаны иметь высокие скорости, так что возникающее от этого давление останавливает дальнейшее сжатие звезды, даже если температура стремится к абсолютному нулю.

Вернувшись к ГР-диаграмме (см. рис. 19.3), в ее нижней левой части мы увидим белые карлики: они горячие, но имеют малую светимость по сравнению с Солнцем.

На пути к белым карликам и нейтронным звездам.

Ядерные реакции поддерживают высокую плотность и температуру, что мешает гравитации раздавить звезду. Но рано или поздно топливо закончится, равновесие внутри звезды нарушится, и она начнет сжиматься. Что будет дальше, зависит от массы светила. У звезд с массой от трех масс Солнца и меньше на стадии красного гиганта образуется углеродно-кислородное ядро. Оно очень горячее, его масса сравнима с массой Солнца, а размер сравним с размером Земли. Это ядро окружено чрезвычайно разреженной оболочкой красного гиганта. В результате сложных процессов эта оболочка мягко сбрасывается, оставляя «голое» ядро. Белый карлик как раз и формируется в результате остывания этого ядра. Газовые оболочки, разлетающиеся от будущих белых карликов, астрономы наблюдают как «планетарные туманности»: внешне они немного похожие на диски планет, если смотреть на них в старые, не слишком качественные телескопы.

Как и звезды малой массы, массивные звезды тоже становятся красными гигантами в конце своей эволюции на главной последовательности. У массивных звезд ядро сжимается и становится настолько горячим (>500-1000 млн °С), что в нем может продолжаться ядерный синтез из углерода, кислорода и т. д. Па этой стадии звезда может стать цефеидой (рис. 19.6) — полезным объектом для измерения расстояний в звездных системах, что мы обсудим в дальнейшем.

Рис. 19.6. Знакомая нам Полярная звезда в Ковше Малой Медведицы на самом деле является тройной звездой. Главная звезда А — это гигант (см. рис. 19.3), который в 2000 раз ярче Солнца. К тому же это переменная звезда-цефеида. Ее тусклый спутник В можно увидеть в небольшой телескоп. Но третью звезду Ab, свет которой тонет в сиянии яркой главной звезды, удаюсь сфотографировать только в 2006 году с помощью космического телескопа «Хаббл». Маленькие компаньоны В и Ab являются звездами главной последовательности.

Ядерные реакции продолжаются, пока центр звезды не станет железо-никелевым. Синтез более тяжелых ядер из железа и никеля не дает выхода энергии, а лишь потребляет ее, и это не мешает сжатию. В конце концов ядро становится таким тяжелым, что оно сжимается уже под действием собственного веса и начинается взрыв сверхновой. Во время взрыва почти все вещество звезды разлетается. Сжавшееся ядро становится либо нейтронной звездой, либо (если звезда была достаточно массивна) черной дырой. Теперь мы детальнее познакомимся с нейтронными звездами.


Рекомендуем почитать
Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.