Эволюция Вселенной и происхождение жизни - [66]
Условия внутри радиуса Шварцшильда черной дыры весьма экзотические. Роли координат пространства и времени там меняются. Например, в обычном мире время течет только в будущее, но в черной дыре оно может течь как вперед, так и назад. Зато в пространстве под радиусом Шварцшильда мы можем передвигаться лишь в одном направлении — только к центру черной дыры. Нашему мозгу не под силу представить такой мир, хотя математически построить его мы в состоянии.
Из-за сильного искривления пространства вблизи черной дыры время замедляется. Если бы мы смогли проследить за падающими на черную дыру часами, например — в телескоп, и если бы, падая, часы продолжали тикать, то мы увидели бы, что, приближаясь к черной дыре, они идут все медленнее. Наконец мы увидели бы, что на расстоянии радиуса Шварцшильда часы вообще остановились. Таким образом, удаленному наблюдателю время кажется застывшим на границе черной дыры. Но наблюдатель, падающий в черную дыру вместе с часами, не заметит в течении времени ничего особенного.
Это еще один пример отсутствия жесткого абсолютного времени; каждый наблюдатель видит течение времени по-своему.
Вблизи черной дыры странно ведут себя и лучи света. Они могут сильно изгибаться и даже наматываться вокруг черной дыры. Некоторые лучи навсегда исчезают в черной дыре. Нам трудно понять, что мы видим вблизи черной дыры, так как «обработка данных» нашего зрения предполагает, что лучи света должны распространяться прямолинейно. Порою даже небольшое отклонение от прямой линии, как это бывает при наблюдении миража, сбивает нас с толку.
Черные дыры имеют еще одну особенность, которую мы пока не упоминали. Они могут вращаться, причем даже очень быстро. Искривление пространства вокруг вращающейся черной дыры впервые вычислил математик из Новой Зеландии Рой Керр в 1963 году.
Вращение черной дыры проявляется как вращение близлежащего пространства: черная дыра тащит за собой пространство, как водоворот. В плоскости вращения скорость водоворота может быть очень высокой и достигать скорости света на радиусе Шварцшильда. Следовательно, неподвижное в этом пространстве тело будет выглядеть издалека как вращающееся вокруг черной дыры со скоростью света. Вдали от радиуса Шварцшильда черной дыры или вблизи обычного вращающегося объекта движение обращающегося по орбите тела будет испытывать сравнительно небольшое возмущение. Но вблизи черной дыры завихрение очень велико. Даже движение в обратную сторону со скоростью света не может спасти тело от втягивания его в круговое движение в направлении вращения черной дыры.
Для каждой черной дыры существует максимальная скорость, с которой она может вращаться. Критическая поверхность для черной дыры, вращающейся с максимальной скоростью, лежит на половине радиуса Шварцшильда от ее центра. Вне критической поверхности лежит область, называемая эргосферой, где скорость пространственного вихря превышает скорость света. При благоприятных обстоятельствах частицы могут поглощать немного вращательной энергии черной дыры в этой области и вылетать из нее, унося энергию с собой.
Обращение одного тела вокруг другого тела в пространстве легко можно понять. Но как понять, что само пространство вращается вокруг центрального тела? Это выходит за рамки здравого смысла.
Обычно мы думаем о пространстве как о жестком фоне, относительно которого мы измеряем движение. Но из общей теории относительности следует, что реальное пространство эластично, и это его свойство имеет наблюдательные проявления.
Увлечение пространства вокруг вращающихся тел долго оставалось лишь гипотезой, высказанной австрийскими физиками Джозефом Лензе и Гансом Тиррингом в 1918 году. До 2004 года не было возможности измерить этот эффект в пространстве, окружающем вращающуюся Землю. Изучая движение двух искусственных спутников Земли — LAGEOS I и II, группа под руководством Игнацио Куифолини из университета Лечче (Италия) и Эррикос Павлис (Мэрилендский университет) обнаружила, что плоскости орбит спутников поворачиваются примерно на два метра в год в направлении вращения Земли. Этот результат согласуется с прогнозом Лензе и Тирринга с точностью 10 %. Недавно запущенный спутник «Gravity Probe В», специально сконструированный в Стэнфордском университете и НАСА для измерения вращения пространства, сейчас пытается подтвердить этот результат.
Одним из явлений, связанных с эластичностью пространства, являются гравитационные волны — небольшие изменения кривизны пространства, распространяющиеся со скоростью света. Хотя американский физик Джозеф Вебер (1919–2000) еще в 1967 году утверждал, что открыл гравитационные волны, в действительности до сих пор нет прямого подтверждения их обнаружения.
На протяжении многих лет Вебер был единственным исследователем в этой области. Его детектор представлял собой 1,5-тонный алюминиевый цилиндр, подвешенный в вакуумном контейнере, изолированный от внешних воздействий, насколько это было возможно. Когда гравитационная волна пронизывает цилиндр, он начинает колебаться с характерной для него частотой. Амплитуда колебаний должна быть очень маленькой, не более
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.