Эволюция Вселенной и происхождение жизни - [63]

Шрифт
Интервал

Рис. 15.2. Георг Риман — математик, проложивший путь для общей теории относительности.

Эта лекция намного опередила свое время и не была оценена большинством ученых. Согласно общепринятому тогда мнению, которое разделял и Ньютон, пространство служит жестким фоном, относительно которого проводятся все изменения. В окружении Римана только Гаусс смог оценить глубину мысли юного математика. На собрании факультета он с большой похвалой отозвался о профессоре физики Вильгельме Вебере и хвалил за оригинальность работу Римана.

Свойства неевклидовых геометрий.

Вселенная конечна или бесконечна? Это не так-то просто «увидеть». Евклидова геометрия прекрасно описывает наши обычные измерения. Но в будничной геометрии трудно встретиться с бесконечностью. С другой стороны, испытываешь немалые трудности, пытаясь представить себе конечный мир со сферической геометрией, хотя его конечность легко описывается математически.

Обычно для демонстрации неевклидовой геометрии в качестве примера используют поверхности. Наша трехмерная Вселенная (мы не учитываем время) в практическом отношении плоская, поэтому в ней мы легко можем заметить кривизну обычных поверхностей. Но трудно представить четырехмерное пространство, не разбираясь в том, что означает кривизна. Наш мозг не привык решать такие задачи, поэтому лучше ограничиться рассмотрением двумерных поверхностей. Сферическая Вселенная имеет странное свойство — у нее конечный объем, хотя ни в каком направлении невозможно найти ее край. Это легче понять, если представить поверхность сферы, которая позволяет нам заметить и другое интересное свойство сферической геометрии: идущий вперед путешественник вернется в начальную точку своего пути после того, как обойдет вокруг света. Путешествуя по Земле, если вы движетесь все время вперед по большому кругу, вы тоже вернетесь в исходную точку. Странный результат, если вы считаете Землю плоской!

Как легко понять, двумерным аналогом сферической Вселенной служит поверхность сферы. Не обязательно иметь возможность взглянуть на нее из третьего измерения или же обходить сферу кругом, чтобы догадаться о кривизне сферической поверхности. Существо, живущее на сферической поверхности, не способное выйти в третье измерение над этой поверхностью и даже не имеющее представления об этом третьем измерении, все равно может проводить построения на этой поверхности, чтобы узнать ее геометрические свойства. Оно может нарисовать треугольник и измерить сумму его внутренних углов. Если результат получится больше 180°, это докажет, что существо живет на сферической поверхности (рис 15.3). Или так: можно нарисовать круг и измерить его. Если отношение длины окружности к ее диаметру меньше, чем π (= 3,141592…), то существо будет знать, что оно живет в мире сферической геометрии.

В противном случае, если сумма внутренних углов треугольника меньше чем 180°, а отношение длины окружности к ее диаметру больше я и если через данную точку можно провести любое число линий, параллельных данной линии, то существо понимает, что оно живет в гиперболическом пространстве. Гиперболическое пространство тянется на бесконечное расстояние и не имеет аналога в обычной жизни. Форма седла, точнее — его центральной части, более или менее напоминает ограниченную область гиперболической поверхности.

Границей между сферическими и гиперболическими поверхностями служит плоская поверхность, или двумерное евклидово пространство. Привычные для нас законы евклидовой геометрии справедливы в этом и только в этом пространстве: сумма внутренних углов треугольника точно равна 180°, отношение длины окружности к ее радиусу в точности равно я, а через точку можно провести одну и только одну прямую, параллельную другой прямой (рис. 15.4).

Рис. 15.3. Треугольники в плоском, гиперболическом и сферическом пространстве. Сумма углов в разных пространствах неодинакова.

Рис. 15.4. Параллельные линии в разных пространствах. В плоском пространстве через данную точку Р можно провести только одну прямую, параллельную другой прямой. В гиперболическом пространстве можно провести любое количество таких прямых. В сферическом пространстве все прямые линии пересекаются, поэтому провести параллельную линию невозможно.

Значение кривизны пространства.

Математик Вильям Клиффорд (1845–1879) переводил труды Римана на английский язык и в процессе этой работы был очарован идеями Римана о связи между физическими явлениями и геометрией. Он стал развивать эти идеи. Читая лекцию в Кембриджском философском обществе, посвященную «науке о пространстве», он обсуждал нашу возможность судить о геометрии пространства на астрономических масштабах и на масштабах столь малых, что они недоступны для наблюдения (то есть в мире элементарных частиц). При этом он утверждал, что «малые области пространства фактически похожи на небольшие холмики на поверхности, которая в среднем плоская, таким образом, обычные законы геометрии к ним неприменимы». Он полагал, что «это свойство искривленности или искаженности непрерывно передается от одной области пространства к другой наподобие волны» и что «изменение кривизны пространства — это как раз то, что реально происходит в явлении, которое мы называем движением материи».


Рекомендуем почитать
Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.


Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури.